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Module I 

Simple Linear Regression Model 

 

This module is divided into two parts. First part deals with the 

introduction of the discipline econometrics, its nature, scope, 

methodology and uses. The second part consists of the 

description of simple linear regression model, its concepts, 

methods and properties. 

1.1: Introduction to Econometrics 

The term econometrics was coined in 1926 by Ragnar A. K. 

Frisch, a Norwegian economist who shared the first Nobel 

Prize in Economics in 1969 with Jan Tinbergen, an 

econometrics pioneer. Although many economists had used 

data and made calculations long before 1926, Frisch felt the 

significance of a new term associated with the interpretation 

and use of data in Economics. Today, Econometrics is a broad 

area of study within economics and the field changes 

constantly according to the emergence of new tools and 

techniques.  

Econometrics deals with the measurement of economic 

relationships and it is an integration of economics, 

mathematical economics and statistics with an objective to 

provide numerical values to the parameters of economic 

relationships. The relationships of economic theories are 

usually expressed in mathematical forms, combined with 

empirical economics. The econometrics methods are used to 

obtain the values of parameters which are essentially the 

coefficients of the mathematical form of the economic 

relationships. The econometric relationships depict the random 
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behaviour of economic relationships which are generally not 

considered in economics and mathematical formulations. 

1.1.1 Goals/Uses/Scope of Econometrics 

Goals/Scope of Econometrics means the importance or 

usefulness of the science, Econometrics. There are mainly 

three main goals for the subject. They are, 

 Analysis , 

 Policy making, and 

 Forecasting 

1) Analysis: Testing Economic Theory 

Earlier economic theories started with a set of assumptions 

concerning the behaviour of some individual units (consumers, 

producers etc.). From these assumptions the economists 

derived some general conclusions or laws determining the 

working process of the economic system. Economic theories 

thus developed in an abstract level were not tested against 

economic reality. In other words no attempts were made to 

examine whether the theories explained the actual economic 

behaviour of individuals.  

Econometrics in fact primarily aims at the verification of 

economic theories. Under such circumstances we can say that 

the purpose of the research is ‗analysis‘ i.e., to obtain the 

empirical evidences to test the explanatory power of economic 

theories and to decide how well they explain the observed 

behaviour of economic units. Today, any theory, regardless of 

its elegance in exposition or its sound logical consistency, 

cannot be established and generally accepted without some 

empirical testing. 
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2) Policy Making: Obtaining numerical estimates of the 

coefficients of economic relationships for policy 

simulations 

In many cases we apply the various econometric techniques in 

order to obtain reliable estimates of the individual coefficients 

of economic relationships from which we can evaluate 

elasticity or other parameters of economic theory. The 

knowledge of obtaining the numerical value of (For example, 

the Marginal concepts in Economics, Concept of multiplier, 

technical coefficients of production etc) coefficients is very 

important for the formulation of the economic policies of the 

governments. It helps to compare the effects of various 

alternative policy decisions. 

For example, the decision of the government about devaluating 

the currency will depend to a great extent on the numerical 

values of Marginal propensities of imports and exports and as 

well as the numerical values of price elasticities of imports and 

exports (ei and ex). If the sum of the price elasticities of 

imports and exports is less than one (ei + ex <1) in absolute 

value, the devaluation will not help in eliminating the deficit in 

BOP. This shows that how important is the numerical value of 

the coefficients of economic relationships. Econometrics can 

provide such numerical estimates and has become an essential 

tool for the formulation of sound economic policies. 

3) Forecasting the future values of economic magnitudes 

Forecasting the values of economic variables is essential in 

framing different economic policies and econometrics will 

help a lot for such forecasting and policy framing. For 

example, suppose government is going to frame its poverty 

policy, under such circumstances it is necessary to know what 
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the current employment situation is, what will be the level of 

poverty in the next five years if the Government doesn‘t take 

any apt anti poverty programmes. The facts and figures gained 

through such estimates will help the government to deal with 

different situations like: If poverty is low in future, 

government should take appropriate measures to avoid its 

occurrence. If poverty in the future is high, government should 

take appropriate measures to reduce it. 

Forecasting is thus becoming increasingly important for the 

regulation of developed economies as well as for the planning 

of the economic development for the underdeveloped 

countries. 

1.1.2 Economic Theory, Mathematical economics and 

Econometrics 

Econometrics deals with the measurement of economic 

relationships. It is an integration of economics, mathematical 

economics and statistics with an objective to provide 

numerical values to the parameters of economic relationships. 

The relationships of economic theories are usually expressed 

in mathematical forms and combined with empirical 

economics. The econometrics methods are used to obtain the 

values of parameters which are essentially the coefficients of 

the mathematical form of the economic relationships. The 

statistical methods which help in explaining the economic 

phenomenon are adapted as econometric methods. The 

econometric relationships depict the random behaviour of 

economic relationships which are generally not considered in 

economics and mathematical formulations. It may be pointed 

out that the econometric methods can be used in other areas 

like engineering sciences, biological sciences, medical 
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sciences, geosciences, agricultural sciences etc. In simple 

words, whenever there is a need of finding the stochastic 

relationship in mathematical format, the econometric methods 

and tools help. The econometric tools are helpful in explaining 

the relationships among variables. 

Econometrics is, mainly, statistical techniques applied to 

economics. Mathematical Economics would also look at 

applications of other areas of mathematics. For example, 

Equilibrium Theory uses a lot of Fixed Point Theorems, which 

rely on ideas from Analysis and Topology. 

Mathematical economics is the application of mathematical 

methods to represent theories and analyze problems 

in economics. By convention, these applied methods are 

beyond simple geometry, such as differential and integral 

calculus, difference and differential equations, matrix 

algebra, mathematical programming, and other computational 

methods. Proponents of this approach claim that it allows the 

formulation of theoretical relationships with rigor, generality, 

and simplicity.  

Mathematics allows economists to form meaningful, testable 

propositions about wide-ranging and complex subjects which 

could less easily be expressed informally. Further, the 

language of mathematics allows economists to make 

specific, positive claims about controversial or contentious 

subjects that would be impossible without mathematics. Much 

of economic theory is currently presented in terms of 

mathematical economic models, a set of stylized and 

simplified mathematical relationships asserted to clarify 

assumptions and implications.  

Broad applications include: 

TEERTHANKER MAHAVEER UNIVERSITY
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 optimization problems (goal equilibrium), whether of a 

household, business firm, or policy maker 

 Static (or equilibrium) analysis in which the economic unit 

(such as a household) or economic system (such as a 

market or the economy) is modelled as not changing 

 Comparative statics as to a change from one equilibrium to 

another induced by a change in one or more factors 

 Dynamic analysis, tracing changes in an economic system 

over time, for example from economic growth.  

1.1.3 Methodology of Econometrics 

How does the econometrician go ahead in analysing an 

economic theory? There came the role of methodology in 

econometrics, it is in fact a step-by-step procedure. These 

steps are: 

1. Statement of the theory/hypothesis 

A theory should have a prediction. In statistics and 

econometrics, we also speak of hypothesis. Hypothesis is an 

if-then Proposition and the theory is in fact a validated 

hypothesis. One example is about the value of the Marginal 

Propensity to Consume (MPC) proposed by Keynes, 

0<MPC<1. Other examples could be that lower taxes would 

increase growth, or maybe that it would increase economic 

inequality, and that introducing a common currency has a 

positive effect on trade. 

2. Specification of Mathematical Model 

A model is a simplified representation of a real-world. It 

should be representative in the sense that it should contain the 

salient features of the phenomena under study. In general, one 

of the objectives in modelling is to have a simple model to 
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explain a complex phenomenon. Such an objective may 

sometimes lead to oversimplified model and sometimes the 

assumptions made are unrealistic. 

This is where the algebra enters. We need to use mathematical 

skills to generate an equation. Assume a theory predicting that 

more schooling increases the wage, ie, a positive relation 

between years of schooling and wage rate. In economic terms, 

we say that the return to schooling is positive on wage.  

The equation is: Y= β0+β1X 

where; Y, the dependent variable as the variable for wage 

and β0 is a constant and β1 is the coefficient of schooling, and 

X, the Independent variable  is a measurement of schooling, 

i.e. the number of years in school. We also call  β0 as intercept 

and  β1 as the slope coefficient. Normally, we would expect 

both β0  and β1 to be positive. 

3. Specification of Econometric model 

An economic model is a set of assumptions that describes the 

behaviour of an economy, or more generally, a phenomenon. 

In practice, generally, all the variables which the experimenter 

thinks are relevant to explain the phenomenon are included in 

the model. Rest of the variables are dumped in a basket called 

―disturbances‖ where the disturbances are random variables 

whose behaviour is unpredictable. This is the main difference 

between economic modelling and econometric modelling. This 

is also the main difference between mathematical modelling 

and statistical modelling. The mathematical modelling is exact 

in nature, whereas the econometric modelling contains a 

stochastic term also. 

Here, we assume that the mathematical model is correct but we 
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need to account for the fact that it may not be so. We add 

an error term, u to the equation above. It is also called 

a random variable  or stochastic variable. It represents other 

non-quantifiable or unknown factors that affect Y. It also 

represents errors of measurements that may have entered the 

data. The econometric equation is: 

Y= β0+β1X+U 

The error term, U, is assumed to follow some sort of statistical 

distribution. 

4. Collection of Data 

We need data for the variables above. This can be obtained 

from government statistics agencies and other sources. A lot of 

data can also be collected on the Internet in these days. But we 

need to learn the art of finding appropriate data from the ever-

increasing loads of data. 

Various types of data are used in the estimation of the model. 

A) Time series data 

Time series data give information about the numerical values 

of variables from collected over a period of time. For example, 

the data during the years 1990-2010 for monthly income 

constitutes time series data. 

B) Cross-section data 

The cross-section data give information on the variables 

concerning individual agents (e.g., consumers or produces) at a 

given point of time. For example, data collected from a sample 

of consumers and their family budgets showing expenditures 

on various commodities by each family, as well as information 

on family income, family composition and other demographic, 
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social or financial characteristics is an example of cross section 

data, as we collect all these information at a point o time 

C) Panel data: 

The panel data are the data from a repeated survey of a single 

(cross-section) sample in different periods of time. 

D) Dummy variable data 

When the variables are qualitative in nature, then the data is 

recorded in the form of the indicator function. The values of 

the variables do not reflect the magnitude of the data. They 

reflect only the presence/absence of a characteristic. For 

example, variables like religion, sex, taste, etc. are qualitative 

variables. The variable `sex‘ may takes two values – male or 

female (for the ease of explaining, we are not considering other 

genders in this example), the variable `taste‘ takes values-like 

or dislike etc. Such values are denoted by the dummy variable. 

For example, these values can be represented as ‗1‘ represents 

male and ‗0‘ represents female. Similarly, ‗1‘ represents the 

liking of a particular taste, and ‗0‘ represents the disliking of 

the taste. 

5. Estimation of the model 

Here, we quantify  β1  and β2  i.e. we obtain numerical 

estimates. This is done by statistical technique 

called regression analysis. This provides the empirical content 

to the theory under consideration. 

6. Hypothesis Testing  

In this stage of testing the hypothesis first we have to consider 

the theory and the hypothesis that we explained in earlier 

stages. The prediction of our theory was that schooling is good 

for the wage. Does the econometric model support this 

TEERTHANKER MAHAVEER UNIVERSITY



 

  13 

hypothesis? What we do here is called statistical inference 

(hypothesis testing). Technically speaking, to have this 

positive relationship between years of schooling and wages, 

the β2  coefficient of the econometric model should be greater 

than 0. 

7. Forecasting/ prediction 

If the hypothesis testing was positive, i.e. the theory was 

concluded to be correct; we forecast the values of the wage 

by predicting the values of education. For example, how much 

would someone earn for an additional year of schooling? If the 

X variable is the years of schooling, the β2 coefficient gives the 

answer to the question. 

8. Use of the model for policy purpose 

Lastly, if the theory seems to make sense and the econometric 

model was not refuted on the basis of the hypothesis test, we 

can go on to use the theory for policy recommendation.  

1.1.4 Types of Econometrics 

Econometrics can be classified in to theoretical and applied 

econometrics. 

The theoretical econometrics includes the development of 

appropriate methods for the measurement of economic 

relationships which are not meant for controlled experiments 

conducted inside the laboratories. The econometric methods 

are generally developed for the analysis of non-experimental 

data. 

The applied econometrics includes the application of 

econometric methods to specific branches of econometric 

theory and problems like demand, supply, production, 

investment, consumption etc. The applied econometrics 
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involves the application of the tools of econometric theory for 

the analysis of the economic phenomenon and forecasting 

economic behaviour. 

1.1.5 Limitations of Econometrics 

Like any other subjects, econometrics also not free from 

limitations. Some of them are; 

a) It is concerned only with quantifiable phenomena like 

prices, production, employment etc. It throws very little 

light on qualitative problems. 

b) All the econometric analysis is based on data availability. 

The available data may be insufficient and inaccurate. 

c) Predictions are made through sampling methods. 

Therefore, the limitations of the sampling method are also 

became the limitations of econometrics. 

d) The statistical methods used in econometrics are based on 

certain assumptions, which are not true with economic 

data. 

e) Econometric methods are time consuming, tedious and 

complex. It requires a sound knowledge of mathematics 

and statistics. 

1.2: Simple Linear Regression Model 

One of the very important roles of econometrics is to provide 

the tools for modelling on the basis of given data. The 

regression modelling technique helps a lot in this task. The 

regression models can be either linear or non-linear based on 

which we have linear regression analysis and non-linear 

regression analysis. We will consider only the tools of linear 

regression analysis and our main interest will be the fitting of 

the linear regression model to a given set of data. 
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1.2.1 Linear regression model 

The term ‗Regression‘ was introduced by Francis Galton and 

Galton‘s Law of Universal regression was confirmed by his 

Friend, Karl Pearson. The modern interpretation of regression 

is quiet different from their analysis. By using modern 

interpretation of regression, we may say that, 

‗Regression analysis is concerned with the study of the 

dependence of one variable (dependant variable), on one or 

more other variables, the explanatory variables (Independent 

Variable), with a view to estimating and/or predicting the 

mean or average value of the former in terms of the known or 

fixed values of the later‘ 

That is, the major objectives of regression analysis are; 

 To estimate the mean value of the dependant variable 

given the value of the independent variables. 

 To test the hypothesis suggested by the underlying 

economic theory about the nature of the dependence. 

 To predict or forecast the mean value of the dependant 

variable, given the values of the independent variables. 

That is, through the regression analysis, we are going to 

estimate the mean value, or average value or expected value of 

the dependant variable ‗Y‘ based on the known values of the 

independent variables ‗X‘s. That is we are estimating 

E(Y/Xi)  

ie, conditional expectation of Y given Xi. 

Suppose the outcome of any process is denoted by a random 

variable Y , called as dependent (or study) variable, depends on 

k independent (or explanatory) variables denoted by X1, X2, 
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X3......Xk Suppose the behaviour of Y can be explained by a 

relationship given by, 

Y = f (X1 , X2 ,..., Xk , β1, β2, ...... βk)+u 

where f is some well-defined function and β1, β2, ...... βk are the 

parameters which characterize the role and contribution of X1 , 

X2 ,... Xk respectively. The term u reflects the stochastic nature 

of the relationship between Y and X1 , X2 ,..., Xk and indicates 

that such a relationship is not exact in nature. When u=0, then 

the relationship is called the mathematical model otherwise the 

statistical model.  

Here we are discussing a ‗simple‘ ‗linear‘ regression model. 

The term ―model‖ is broadly used to represent any 

phenomenon in a mathematical framework. To explain a 

simple linear model, two terms ‗simple‘ and ‗linear‘ must be 

explained first. 

The term ‗simple‘ regression means, it is a regression in which 

the dependant variable is related to a single explanatory 

variable. It represents a fundamental idea of the regression 

analysis that ‗a model must be as simple as possible. We have 

the multiple regressions also in which the regressand 

(Dependent Variable) is related to more than one regressors 

(Independent Variables). Therefore in a simple regression 

model there are only two variables; 

 One explained variable, and 

 One explanatory variable. 

For example, in the Keynesian theory of consumption, we are 

trying to analyse the relationship of consumption with the 

household income. Here consumption is the regressand and the 

household income is the regressor. This type of analysis is 
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called simple regression or two variable regression analysis. 

This simple form can be expressed as; 

 Y= β0+β1Xi 

A model or relationship is termed as ‗linear‘ if it is linear in 

parameters and ‗non-linear‘, if it is not linear in parameters. In 

other words, if all the partial derivatives of Y with respect to 

each of the parameters β1, β2, ...... βk are independent of the 

parameters, then the model is called as a linear model. If any 

of the partial derivatives of Y with respect to any of the β1, β2, 

...... βk is not independent of the parameters, the model is called 

non-linear. Note that the linearity or non-linearity of the model 

is not described by the linearity or non-linearity of explanatory 

variables in the model.  

For example, 

   

is a linear model because are 

independent of the parameters βi, (i=1,2,3,...). On the other 

hand, 

  

is a non-linear model because depends on β1, 

although  and  are independent of any of the β1, 

β2 or β3. 

When the function f is linear in parameters, then Y = f (X1 , X2 

,..., Xk , β1, β2, ...... βk)+u is called a linear model and when the 
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function f is non-linear in parameters, then it is called a non-

linear model. In general, the function f is chosen as 

Y = f (X1 , X2 ,..., Xk , β1, β2, ...... βk) = β1 X1+ β2 X2+...... +βk Xk 

to describe a linear model. Since X1, X2 ,..., Xk are pre-

determined variables and Y is the outcome, so both are known. 

Thus the knowledge of the model depends on the knowledge 

of the parameters β1, β2, ...... βk. The statistical linear modelling 

essentially consists of developing approaches and tools to 

determine β1, β2, ...... βk in the linear mode Y= β1 X1+ β2 

X2+...... +βk Xk given the observations on y and X1, X2 ,..., Xk.  

Therefore, simple linear regression model (SLRM) means that, 

 There are only two variables; one dependant and one 

independent and 

 The relation between dependant and independent 

variables are linear in parameters.(may or may not be 

linear in variables) 

Different statistical estimation procedures, e.g., method of 

maximum likelihood, the principle of least squares, method of 

moments etc. can be employed to estimate the parameters of 

the model. The method of maximum likelihood needs further 

knowledge of the distribution of Y whereas the method of 

moments and the principle of least squares do not need any 

knowledge about the distribution of Y. The regression analysis 

is a tool to determine the values of the parameters given the 

data on Y and X1, X2 ,..., Xk. Before going in to the process of 

estimation, it is better to have an idea of some important terms 

and terminologies such as population regression function, 

sample regression function, significance of stochastic 

disturbance term etc. that are frequently used in the analysis of 

regression models. 
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1.2.2 Population Regression Function (PRF) 

The group of individuals or items under study is known as the 

population. In statistics, population is the aggregate of facts or 

objects, animate or inanimate, under study in any statistical 

investigation. Informally, it means the set of all possible 

outcomes of an experiment or measurement. We always expect 

an idealistic situation which is possible only with a population. 

This is a highly idealistic situation and very rare to occur. Even 

the distinction between population and sample is relative and 

such a distinction is necessary in economic studies.  

A Population Regression Function (PRF) can be defined as the 

average value of the dependant variable for a given value of 

the independent variable. In other words, PRF tries to find out 

how the average value of the dependant variable varies with 

the given value of the explanatory variable.  

To explain the PRF. We are taken an example of a 

hypothetical country with a total population of 50 families. 

Suppose we are interested in studying the relationship between 

weekly family expenditure (Y) and weekly disposable income 

(X). That is, we want to predict the (population) mean level of 

weekly consumption expenditure knowing the family‘s weekly 

income. Suppose we divide these 50 families into 10 groups of 

approximately same income and examine the consumption 

expenditure of families in each of these income groups. This 

hypothetical data can be shown as follows. 
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Table 1.1 

X Weekly 

family 

income 

10 12 15 18 20 23 25 28 30 35 

Y weekly 

family 

expenditure 

5 

6 

7 

8 

9 

5 

8 

9 

10 

8 

9 

10 

11 

13 

15 

11 

12 

13 

14 

15 

11 

14 

15 

16 

15 

16 

17 

18 

19 

23 

16 

17 

18 

21 

23 

16 

18 

20 

22 

24 

26 

20 

21 

23 

24 

22 

23 

24 

26 

30 

Total 35 32 66 65 56 108 95 126 88 125 

 

The above table can be interpreted as follows. 

Corresponding to the weekly income 10, there are 5 families 

whose weekly consumption expenditure range between 5 and 

9. Similarly, given X=30, there are 4 families whose weekly 

consumption expenditure falls between 20 and 24. In other 

words, each column of the table above gives the conditional 

distribution of ‗Y‘ conditional upon the given values of X.  

From this table we can easily compute conditional 

probabilities of y, P(Y/X), as follows 

For X=10, there are 5 y values, 5,6,7,8 and 9. Therefore, given 

X= 10, the probability of obtaining any of these consumption 

expenditure is 1/5. Symbolically,  

P(Y=7/X=10) = 1/5. Or 

P(Y =23/X=30) = ¼ and so on. 

These conditional probabilities can be given in Table 1.2 for 

the values given in Table 1.1 
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Table 1.2 

X  10 12 15 18 20 23 25 28 30 35 

P(y/Xi) 

Conditional 

probabilities  

1/5 

1/5 

1/5 

1/5 

1/5 

¼ 

¼ 

¼ 

¼ 

 

1/6 

1/6 

1/6 

1/6 

1/6 

1/6 

1/5 

1/5 

1/5 

1/5 

1/5 

¼ 

¼ 

¼ 

¼ 

 

1/6 

1/6 

1/6 

1/6 

1/6 

1/6 

1/5 

1/5 

1/5 

1/5 

1/5 

1/6 

1/6 

1/6 

1/6 

1/6 

1/6 

¼ 

¼ 

¼ 

¼ 

1/5 

1/5 

1/5 

1/5 

1/5 

Conditional 

Means of y 

7 8 11 13 14 18 19 21 22 25 

 

From the conditional probability distribution of Y we can 

compute its mean or average value, known as the, conditional 

mean or conditional expectation denoted by E(Y/X=Xi) and 

simply as E(Y/Xi). 

When we plot the data of weekly family consumption 

expenditure at different levels of income on a graph paper we 

get a scatter diagram as follows (Figure 1.1). 

Figure 1.1 Population Regression Line 
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The Figure 1.1 shows very clearly that consumption 

expenditure on an average increases as income increases. 

When we connect the conditional means of Y, we get a straight 

line with a positive slope. This line is known as the Population 

Regression Line (PRL).  

Geometrically, a population regression curve is simply the 

locus of the conditional means or expectations of the 

dependent variable for the fixed values of the independent 

variables. Therefore it is clear that each conditional mean is a 

function of Xi. Symbolically,  

 E(Y/Xi) = f (Xi).....................(1) 

The above equation is known as the Population Regression 

Function (PRF). It merely states that the population means of 

the distribution of Y given X is functionally related to Xi.  

Taking our example of consumption function, 

E(Y/Xi) = β0+β1Xi...........................(2) 

The above example is a linear population regression function. 

2.2.1 Stochastic Specification of PRF 

The PRF states that the mean or average responses of Y varies 

with X. Consider our consumption expenditure figures, at 

income level 20, it can be seen as 11, 14, 15 and 16 with a 

mean 14. The PRF indicates the average only. The deviation 

from mean of the actual expenditure figures are not explained 

by the PRF. Therefore, when we take one consumer at random, 

his consumption expenditure may be greater or less than the 

mean value. So this can be expressed by the stochastic 

specification of PRF as; 

Yi = E(Y/Xi) + ui 

Where; ui = Stochastic error term. 

TEERTHANKER MAHAVEER UNIVERSITY



 

  23 

ui may be defined as an unobservable random variable taking 

positive or negative values. It is also termed as Stochastic 

disturbance term. 

Therefore, we can explain the stochastic PRF as; the 

expenditure of a family, given its income level as the sum of 

two components. 

1. E(Y/Xi) - conditional mean expenditure and 

2. ui -  random component. 

Therefore; our estimated consumption function can be 

expressed as;  

Yi = E(Y/Xi) + ui  or 

Yi = β0+β1Xi + ui ........................(3) 

The stochastic specified PRF clearly shows that there are 

other variables besides income that affect consumption 

expenditure and that an individual family‘s consumption 

expenditure cannot be fully explained by the regression 

model. 

The significance of Error term/ Stochastic Disturbance term 

(ui  

Here we are going to explain the significance of incorporating 

the term ui in the econometrics model. Following are the main 

reasons for its inclusion:  

1. Vagueness of theory:- Sometimes we may ignorant 

or unsure about the other variables affecting Y (consumption) 

other than income. Under such circumstances, the theory may 

be incomplete to explain the behaviour of Y. Therefore ui may 

be used as a substitute for all the excluded or omitted variables 

from the model. 
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2. Unavailability of data:- Even if we know all other 

variables affecting Y other than X, there may not have 

quantitative information about these variables. Therefore we 

may forced to omit some variables from our model despite its 

great theoretical relevance. Hence ui may be implied this 

omitted variables.  

3. Core variables versus Peripheral variables:- Apart 

from the influence of different variables, there may be some 

variables which jointly influence the model, which is not 

explicitly in the model. ui thus tries to explain the combined 

effect of these variables in the model concerned.  

4. Intrinsic randomness in human behaviour:- Even if 

we succeed in introducing all the relevant variables into the 

model there may be some intrinsic randomness in the human 

behaviour. Therefore ui may be well reflect these intrinsic 

randomness.  

5. Poor proxy variables:- Although the classical 

regression model assumes that the variables Y and X are 

measured accurately, in practice, the data may be plagued by 

errors of measurement. But since data on these variables are 

not directly observable in practice we may use proxy variables. 

The disturbance term ui may in this case also represent the 

errors of measurement.  

6. Principle of parsimony:-  By this principle, we 

would like to keep our regression model as simple as possible. 

It is done by avoiding some variables from the model. Let ui 

represents all the omitted variables.  

7. Wrong functional form:- Even if we have 

theoretically correct variables explaining a phenomena, but 

unfortunately due to the unavailability of data on these 
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variables, we do not know the form of the functional 

relationship between the regressand  and the regressors. In two 

variable models, the functional form of the relationship can 

often be gained from the scatter diagram but in a multiple 

regression model it is not easy to determine the appropriate 

functional form graphically. So the errors of the functional 

form can also be solved by the inclusion of the random 

variable ui. 

For all these reasons, stochastic disturbances term ui assume an 

extremely crucial role in regression analysis. 

1.2.3. The Sample Regression Function (SRF) 

Practically, it is not possible to rely on population studies 

always. Under such circumstances we have to rely on sample 

studies associated with this we face sampling related problems 

too. Therefore, our task is to estimate the PRF on the basis of 

the sample information.  

For this, we randomly select some of the Y values 

corresponding to fixed values of X from the given population. 

In this way, we have to draw so many samples from the 

population. Considering our example, we can draw a sample 

from the given population of income and consumption 

expenditure as follows (Table 1.3).  

The Table 1.3 is a sample of consumption expenditure at 

different levels of income. Like this we have to draw ‗n‘ 

different samples from the population. 

When we estimate the average value of the dependent variable 

with the help of a sample it is called stochastic Sample 

Regression Function (SRF) to estimate the PRF. Actually, to 

estimate the numerical values of βs in PRF, we have to depend 
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on the whole data. But in practice, we are interested in a 

sample and with the help of the sample, we are trying to 

estimate the PRF. 

When the plot the sample data on consumption expenditure on 

a graph paper we have the Figure 1.2 

Table 1.3 Sample Data on Consumption Expenditure 

Weekly Family 

Income 

Weekly Family 

consumption Expenditure 

10 7 

12 8 

15 11 

18 13 

20 15 

23 17 

25 18 

28 20 

30 21 

35 24 

 

Figure 1.2 Sample Regression Line (SRL) 
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The SRF can be expressed as; 

Yi = + ûi......................(4) 

Then our objective is to estimate the PRF, Yi = β0+β1Xi + ui 

on the basis of the SRF, Yi = + ûi. 

Here the SRF is the estimator of the PRF. We are using SRF to 

find PRF. That is, as the estimator of β0, as the 

estimator of β1 and ûi as the estimator of Ui. 

The graphical representation of SRF is termed as sample 

regression line SRL. To conclude, we can say that the primary 

objective of regression analysis is to estimate PRF on the basis 

of the SRF. We may have to select as many samples as 

possible to reduce the sampling fluctuations, so that it will 

become more easy to approximate the SRF to the PRF. 

So in the linear regression analysis we are trying to estimate 

the average value of the dependent variable Y for any given 

values of the independent variable Xi. For this we are 

estimating β0 and β1 with the help of  and .For the 

estimation of a linear regression model there are mainly two 

methods; 

1.  Ordinary Least Square (OLS) method, and 

2.  Maximum Likelihood (ML) method  

The method of OLS is extensively used in regression analysis 

because of its mathematical simplicity. But both methods gave 

the same results. 

1.2.4 Method of Ordinary Least Squares (OLS 

Method) 

The method of Ordinary Least Squares (OLS) was developed 
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by a famous German mathematician Carl Frederich Gauss. The 

OLS method has some very attractive statistical properties 

under certain assumptions which made it one of the most 

powerful and popular method of regression analysis. The OLS 

method can be explained as follows. 

Using OLS method through regression analysis we are 

estimating the PRF: 

 Yi = β0+β1Xi + ui 

From SRF: 

Yi = + ûi 

 We have to know that; 

Ŷi =   

Therefore; 

  Yi = Ŷi + ûi .....................  (5) 

Where;  

      Ŷi = estimated value or conditional mean value of Yi  

From equation (5) we have; 

ûi= Yi - Ŷi.....................  (6) or 

ûi= Yi – ( )................. (7) 

ûi= Yi - ........................... (8) 

 It shows that the residuals (ûi) are simply the differences 

between the actual and estimated Y values. For given ‗n‘ pairs 

of observations on Y and X, we would like to determine the 

SRF in such a manner that it is as close as possible to the 

actual Y. To attain this, we may use a criterion that the sum of 

residuals is as small as possible. That is, 
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Ʃûi= Ʃ (Yi - Ŷi) is as small as possible.  

But it is not a very good criterion because even though the 

residuals are not scattered evenly from the SRF we gave equal 

importance to each residuals. To clear this, we have to 

consider the following starter diagram (Figure 1.3). 

When we are considering the scatter diagram (Figure 1.3) 

some residuals are closer to SRF whereas some others are 

widely scattered from the SRF. When we are adopting the 

criterion of minimising Ʃûi by summing  all the ûis, so that the 

algebraic sum of the ûi is small or even zero although the ûi are 

widely scattered about the SRF. Even if Ʃûi is small, we can 

find a greater difference between actual and estimated Y 

values. As a result, minimising the sum of squares of errors is 

not considered to be a very good criterion to estimate PRF 

using SRF. 

Figure 1.3 Scatter diagram of SRF and Ui 
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We can avoid this problem if we adopt the Least Square 

criterion.  Using this criterion, the SRF can be fixed as; 

Ʃûi
2
 = Ʃ (Yi - Ŷi)

2 
is as small as possible 

 or  

Ʃûi
2
 = Ʃ (Yi - )

2
 is as small as possible.  

By squaring the residuals this method gives higher weightage 

to those residual which are widely scattered about the SRF. So 

in the OLS method the criteria adopted for fixing SRF is that 

the sum of squares of the residuals should be minimum to get 

best estimators.  

The OLS principal chooses  and   in such a manner that 

for a given sample Ʃûi
2
 is as small as possible. In other words, 

for a given sample, the method of least squares provides us 

with unique estimates of  and   that give the smallest 

possible value of Ʃûi
2
.  

Using OLS method the sum of squared residuals (Ʃûi
2
) is to be 

minimised with respect to parameters. For this we are adopting 

two principles or two steps.  

1) Differentiation principle and  

2) Minimization principle  

That is, we are first differentiating the residuals with respect to 

parameters. That is we are finding,  

∂ Ʃûi
2
/∂ and ∂ Ʃûi

2
/∂  

and then applying the minimization principle; 

- First derivative should be equal to zero and  
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-Second derivative should be greater than zero or positive. 

That is the minimization principles are; 

-∂Ʃûi
2
/∂ =0  And  ∂Ʃûi

2
/∂ =0 

And 

- ∂
2Ʃûi

2
/(∂ )

2
 >0 And   ∂

2Ʃûi
2
/(∂ )

2 
>0 

By applying these two principles we arrive at two equations, 

popularly known as normal equations. The derivation of 

normal equation using differentiation and minimization 

principles are given below. 

Yi = + ûi 

ûi= Yi -  

ûi
2

 = (Yi - )
2
 

Sum of squares, 

∑   
 

   

 ∑      
 

   

 

∂ Ʃûi
2
/∂ = 2 ∑       

    

∂ Ʃûi
2
/∂ =0 => ∑       

      

∑   ∑     

 

   

 

 

   

 

That is, 

ƩYi = n + ƩXi ...............(1) 
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Similarly, 

∂ Ʃûi
2
/∂ = 2 ∑         

 
    

∂Ʃûi
2
/ =0 => ∑ (   )    

 
      

∑     ∑       

 

   

 

 

   

 

That is, 

ƩYiXi =  ƩXi +  ƩX
2

i ................(2) 

Then the two normal equations are; 

ƩYi = n + ƩXi ...............(1) 

ƩYiXi =  ƩXi +  ƩX
2

i ................(2) 

 By solving these two normal equations we have; 

=  
 Ʃ     Ʃ  Ʃ  

 Ʃ     Ʃ    
 

=
Ʃ(   )      

 Ʃ     
   

= 
Ʃ    

Ʃ  
      where,  xi = Xi-  and yi = Yi-  

And, 

TEERTHANKER MAHAVEER UNIVERSITY



 

  33 

= 

Ʃ   Ʃ   Ʃ   Ʃ    

 Ʃ     Ʃ    
   

That is, 

 =  -  

Therefore we have the two OLS estimators of the Simple 

Linear Regression model as, 

=  -   and 

= 
Ʃ    

Ʃ  
       

The estimators thus obtained (  and   ) are known as the 

least square estimators or OLS estimators. This OLS 

estimators posses some statistical properties as; 

- The OLS estimators are expressed solely in terms of 

observable quantities (sample quantities). Therefore they can 

be easily computed.  

- OLS estimators point estimators. That is, given the sample, 

each estimator will provide only single value of the relevant 

population parameter  

- Once the OLS estimates are obtained from the sample data, 

the sample regression line can be easily obtained. The 

regression line thus obtained possess the following properties  

* The regression line passes through the sample means of 

Y and X (X and  ) 

* The mean value of the estimated Y= Ŷi which is equal 

to the mean value of the actual Y.  
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* The mean value of the residuals is zero  

* The residuals ûi are and correlated with the predicted Yi  

* The residuals are and correlated with X. 

1.2.5 The Classical Linear Regression Model  

or 

The Assumptions underlying the Method of OLS 

Like many statistical analyses, ordinary least squares (OLS) 

regression has its own underlying assumptions. When these 

assumptions for linear regression are found true, Ordinary 

Least Squares produces the best estimates. However, if some 

of these assumptions are not materialised, you might need to 

employ remedial measures or use other estimation methods to 

improve the results. 

Most of these assumptions pivot around the properties of the 

error term. Unfortunately, the error term is a population 

parameter that we never known in advance. Instead, we are 

using the next best thing that is available—

the residuals. Residuals are the sample estimate of the error for 

each observation. 

Assumption 1: The regression model is linear in parameters 

This assumption addresses the functional form of the model. 

In statistics, linearity of a model can be expressed in two ways; 

- Linearity in variables and 

- Linearity in parameters 

Linearity in variables means that the conditional expectation of 

Y is a linear function of Xi. That is, geometrically the 
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regression curve in this case is a straight line. In short, the 

powers of the variables are always one. That is, 

E(Y/Xi) = β0+β1Xi is a linear function whereas, 

E(Y/Xi) = β0+β1Xi
2
 is not a linear function. 

Linearity in parameters means that the conditional expectation 

of Y is a linear function of parameters, the βs; it may or may 

not be linear in variables. That is the powers of βs are always 

one. For example,  is 

a regression model which are linear in parameters whereas, 

Y=β0+β1
2
Xi is not. 

Of the two interpretation of linearity, linearity in parameters is 

relevant for the development of regression theory.  

In fact, the defining characteristic of linear regression is this 

functional form of the parameters rather than the ability to 

model curvature. Linear models can model curvature by 

including nonlinear variables such as polynomials and 

transforming exponential functions. To satisfy this assumption, 

the correctly specified model must fit the linear pattern. 

Assumption 2: The error term has a population mean of zero 

The error term in fact explains the variation in the dependent 

variable that the independent variables do not explain. Random 

chance should determine the values of the error term. For our 

model to be unbiased, the average value of the error term must 

equal zero. That is, E(Ui/Xi) = 0 

Suppose the average error is +7. This non-zero average error 

indicates that our model systematically under-estimates the 

observed values. Statisticians refer to systematic error like this 

as bias, and it signifies that our model is inadequate because it 

is not correct on an average. 
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Assumption 3: Observations of the error term are 

uncorrelated with each other (No Autocorrelation) 

This assumption says that no two observations of the error 

term in a regression model are correlated. That is, one 

observation of the error term should not predict the next 

observation. For instance, if the error for one observation is 

positive and that systematically increases the probability that 

the following error is positive, that is a positive 

autocorrelation. If the subsequent error is more likely to have 

the opposite sign, that is a negative autocorrelation. This 

problem is known both as serial correlation and 

autocorrelation. Serial correlation is most likely to occur in 

time series models. Symbolically no autocorrelation can be 

expressed as, 

 Cov(Ui,Uj / Xi,Xj) =0 

Assess this assumption by graphing the residuals in the order 

that the data were collected. We want to see randomness in the 

plot. In the graph for a sales model, there is a cyclical pattern 

with a positive autocorrelation. 

Figure 1.4 Autocorrelation 
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As it is explained, if we have information that allows to predict 

the error term for an observation, we must incorporate that 

information into the model itself. To resolve this issue, we 

might need to add an independent variable to the model that 

captures this information. For the sales model shown in Figure 

1.4, we need to add variables that explain the cyclical pattern. 

Serial correlation reduces the precision of OLS estimates. 

Analysts can also use time series analysis for time dependent 

effects. 

Assumption 4: The error term has a constant variance (No 

Heteroscedasticity) 

The error variance should be consistent for all observations. In 

other words, the variance does not change for each observation 

or for a range of observations. This preferred condition is 

known as homoscedasticity (same spread/scatter). If the 

variance changes, we refer to that as heteroscedasticity 

(different spread/scatter). Homoscedasticity can be expressed 

symbolically as, 

Var(Ui/Xi ) = σ
2
 

Whereas, the hetroscedasticity can be expressed as,  

Var(Ui/Xi ) = σi
2
 

The easiest way to check this assumption is to create residuals 

versus estimated value plot. On this type of graph, 

heteroscedasticity appears as a cone shape where the spread of 

the residuals increases in one direction. In the graph below 

(Figure 1.5), the spread of the residuals increases as the fitted 

value increases. 

Heteroscedasticity reduces the precision of the estimates in 

OLS linear regression. 
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Note: When both assumption 4 (no autocorrelation) and 5 

(homoscedasticity) are true, statisticians say that the error term 

is independent and identically distributed (IID) and  

Figure 1.5 Hetroscedasticity 

 

Assumption 5: No independent variable is a perfect linear 

function of other explanatory variables (No Perfect 

Multicollinearity) 

Perfect correlation occurs when two variables have a Pearson‘s 

correlation coefficient of +1 or -1. Under such circumstances, 

when one of the variable changes, the other variable also 

change in a fixed proportion.  

Ordinary Least Squares cannot distinguish one variable from 

the other when they are perfectly correlated. If these 

correlations are very high, it can cause problems. Statisticians 

refer to this condition as multicollinearity, and it reduces the 

precision of the estimation in OLS linear regression. 
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Assumption 6: The error term is normally distributed  

For estimation of the regression model using OLS does not 

require the assumption that the error term follows a normal 

distribution to produce unbiased estimates with the minimum 

variance. However, satisfying this assumption allows us to 

perform statistical hypothesis testing and generate 

reliable confidence intervals and prediction intervals. 

The easiest way to determine whether the residuals follow a 

normal distribution is to assess a normal probability plot. If the 

residuals follow the straight line on this type of graph, they are 

normally distributed (Figure 1.6) 

Figure 1.6 Normal probability plot 

 

Assumption 7:  X values are fixed in repeated sampling  

Values taken by the Independent variable X (regressor) are 

considered to be fixed in repeated sampling. More technically 

X is assumed to be non-stochastic. When we are estimating 

PRF based on SRF we may relies on more than one sample. In 

all these repeated sampling the values of the regressor will 
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change. This means that our regression analysis is conditional 

regression analysis, ie, conditional on the given values of the 

regressor X. That is we are estimating E(Y/Xi). 

Assumption 8: Zero covariance between Ui and Xi 

This assumption states that the explanatory variables X and the 

disturbance U are uncorrelated. It is because in our PRF we are 

assuming  that X and U have separate influence on Y. When X 

and U are correlated it is not possible to assess their individual 

effects on Y. This zero covariance between X and U can be 

expressed as; 

Cov(Ui,Xi) = 0 

Assumption 9: The number of observations ‘n’ must be 

greater than the number of parameters to be estimated 

This assumption states that the number of observations 

associated with  X and Y should be greater than the number of 

parameters (βs) to be estimated. Alternately, the number of 

observations ‗n‘ must be greater than the number of 

explanatory variable Xs. 

Assumption 10: Variability in X values  

This assumption is very important. This assumption states that 

X values are not identical. That is Xi ≠ . When Xi = , we 

cannot measure the β2 and hence the variability in Y. In short, 

the X values in a given sample must not all be the same. 

Technically variance of X must be a finite positive number. 

Var (X)>0 

Simply the assumption states that there must be variability 

both in X and Y values.  
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Assumption 11: Rregression model is correctly specified  

The CLRM assumed that the model used to test an economic 

theory is correctly specified. Alternately there is no 

specification bias or errors in the model used in regression 

analysis. An econometric investigation begins with the 

specification of the model underlying the phenomenon of 

interest. The model specification includes, 

 -The selection of variables to be included  

-The selection of the functional form of the model  

-What are the assumptions made about Xi, Yi and Ui 

By doing all these correctly we have valid estimates. The 

validity of interpreting the estimated regression is highly 

questionable when the used models are of wrong functional 

form. Therefore, the correct specification of the economic 

model is of great importance. 

1.2.6 Properties of OLS Estimators 

Or 

The Gauss-Markov Theorem 

Linear regression models have several applications in real life. 

In econometrics, Ordinary Least Squares (OLS) method is 

widely used to estimate the parameters of a linear regression 

model. For the validity of OLS estimates, the following 

assumptions are made while running linear regression models. 

A1. The linear regression model is ―linear in parameters.‖ 

A2. There is a random sampling of observations. 

A3. The conditional mean should be zero. 

A4. There is no multi-collinearity (or perfect collinearity). 
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A5. Spherical errors: There is homoscedasticity and no auto-

correlation 

A6: Optional Assumption: Error terms should be normally 

distributed. 

These assumptions are extremely important because violation 

of any of any of these assumptions would make OLS estimates 

unreliable and incorrect. Specifically, a violation would result 

in incorrect signs of OLS estimates, or the variance of OLS 

estimates would be unreliable, leading to confidence intervals 

that are too wide or too narrow. 

This being said, it is necessary to investigate why OLS 

estimators and its assumptions gather so much focus. Here, the 

properties of OLS model are discussed. First, the famous 

Gauss-Markov Theorem is outlined. Thereafter, a detailed 

description of the properties of the OLS model is described.  

The Gauss-Markov Theorem 

The Gauss-Markov Theorem is named after Carl Friedrich 

Gauss and Andrey Markov. 

Let the regression model be:  

Yi = β0+β1Xi + ui 

Let  is the estimator of β0 and   is the estimator of β1. 

According to the Gauss-Markov Theorem, under the 

assumptions A1 to A5 of the linear regression model, the OLS 

estimators and  are the Best Linear Unbiased 

Estimators (BLUE) of β0 and β1. In other words, the OLS 

estimators and  have the minimum variance of all linear 

and unbiased estimators of β0 and β1. BLUE summarizes the 

TEERTHANKER MAHAVEER UNIVERSITY



 

  43 

properties of OLS regression. These properties of OLS in 

econometrics are extremely important, thus making OLS 

estimators one of the strongest and most widely used 

estimators for unknown parameters. This theorem tells that one 

should use OLS estimators not only because it is unbiased but 

also because it has minimum variance among the class of all 

linear and unbiased estimators. 

Properties of OLS Regression Estimators 

Property 1: Linear 

This property is more concerned with the estimator rather than 

the original equation that is being estimated. In assumption A1, 

the focus was that the linear regression should be ―linear in 

parameters.‖ However, the linear property of OLS estimator 

means that OLS belongs to that class of estimators, which are 

linear in Y, the dependent variable. Note that OLS estimators 

are linear only with respect to the dependent variable and not 

necessarily with respect to the independent variables. 

The linear property of OLS estimators doesn‘t depend only on 

assumption A1 but on all assumptions A1 to A5. 

Proof:- 

We have, 
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Defining the observation weights for i = 1, …, 

N, we can rewrite the last expression above for as: 

 

Note that the formula for and the definition of the weights 

ki imply that is also a linear function of the Yi such that 

 

Result: The OLS slope coefficient estimator is a linear 

function of the sample values Yi (i = 1,…,N), where the 

coefficient of Yi or yi is ki. 

Properties of the Weights ki  

In order to establish the remaining properties of , it is 

necessary to know the arithmetic properties of the weights ki. 

These properties are, 
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Property 2: Unbiasedness 

If you look at the regression equation, you will find an error 

term associated with the regression equation that is estimated. 

This makes the dependent variable also random. If an 

estimator uses the dependent variable, then that estimator 

would also be a random number. Therefore, before describing 

what unbiasedness is, it is important to mention that 

unbiasedness property is a property of the estimator and not of 

any sample. 

Unbiasedness is one of the most desirable properties of any 

estimator. The estimator should ideally be an unbiased 

estimator of true parameter/population values. 

Consider a simple example: Suppose there is a population of 

size 1000, and you are taking out samples of 50 from this 

population to estimate the population parameters. Every time 

you take a sample, it will have the different set of 50 

observations and, hence, you would estimate different values 

of and . The unbiasedness property of OLS method 

says that when you take out samples of 50 repeatedly, then 

after some repeated attempts, you would find that the average 

of all the and  from the samples will equal to the actual 

(or the population) values of β0 and β1. 

In short,  
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Here, ‗E‘ is the expectation operator. 

In layman‘s term, if you take out several samples, keep 

recording the values of the estimates, and then take an average, 

you will get very close to the correct population value. If your 

estimator is biased, then the average will not equal the true 

parameter value in the population. 

Proof:- 

We have, 

 

Our PRF is,   

 

Now take expectations of the above expression for , 

conditional on the sample values {Xi: i = 1, …, N} of the 

regressor X. Conditioning on the sample values of the 

regressor X means that the ki are treated as nonrandom, since 

the ki are functions only of the Xi. 

 

Result: The OLS slope coefficient estimator is an unbiased 

estimator of the slope coefficient β1: that is, 
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Graphically the property of unbiasedness is depicted in Figure 

1.7. The unbiasedness property of OLS in Econometrics is the 

basic minimum requirement to be satisfied by any estimator. 

However, it is not sufficient for the reason that most times in 

real-life applications, we will not have the luxury of taking out 

repeated samples. In fact, only one sample will be available in 

most cases. 

Figure 1.7 Unbiasedness of OLS Estimators 

 

Property 3: Best: Minimum Variance 

First, let us look at what efficient estimators are. The efficient 

property of any estimator says that the estimator is 

the minimum variance unbiased estimator. Therefore, if we 

take all the unbiased estimators of the unknown population 

parameter, the estimator will have the least variance. The 

estimator that has less variance will have individual data points 

closer to the mean. As a result, they will be more likely to give 

better and accurate results than other estimators having higher 
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variance. In short: 

1. If the estimator is unbiased but doesn‘t have the least 

variance – it‘s not the best! 

2. If the estimator has the least variance but is biased – 

it‘s again not the best! 

3. If the estimator is both unbiased and has the least 

variance – it‘s the best estimator. 

Now, talking about OLS, OLS estimators have the least 

variance among the class of all linear unbiased estimators. So, 

this property of OLS regression is less strict than efficiency 

property. Efficiency property says least variance among all 

unbiased estimators, and OLS estimators have the least 

variance among all linear and unbiased estimators. 

Proof:- 

The variance of the OLS slope coefficient estimator  is 

defined as; 
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Graphically we can show the minimum variance property of 

OLS estimators as Figure 1.8 
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Figure 1.8 Minimum Variance of OLS Estimator 

 

The above three properties of OLS model makes OLS 

estimators BLUE as mentioned in the Gauss-Markov theorem. 

It is worth spending time on some other estimators‘ properties 

of OLS in econometrics. The properties of OLS described 

below are asymptotic properties of OLS estimators. So far, 

finite sample properties of OLS regression were discussed. 

These properties tried to study the behavior of the OLS 

estimator under the assumption that you can have several 

samples and, hence, several estimators of the same unknown 

population parameter. In short, the properties were that the 

average of these estimators in different samples should be 

equal to the true population parameter (unbiasedness), or the 

average distance to the true parameter value should be the least 

(efficient). However, in real life, you will often have just one 

sample. Hence, asymptotic properties of OLS model are 

discussed, which studies how OLS estimators behave as 

sample size increases. Keep in mind that sample size should be 

large. 
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Property 4: Asymptotic Unbiasedness 

This property of OLS says that as the sample size increases, 

the biasedness of OLS estimators disappears. 

Property 5: Consistency 

An estimator is said to be consistent if its value approaches the 

actual, true parameter (population) value as the sample size 

increases. An estimator is consistent if it satisfies two 

conditions: 

a. It is asymptotically unbiased 

b. Its variance converges to 0 as the sample size increases. 

Both these hold true for OLS estimators and, hence, they are 

consistent estimators. For an estimator to be useful, 

consistency is the minimum basic requirement. Since there 

may be several such estimators, asymptotic efficiency also is 

considered. Asymptotic efficiency is the sufficient condition 

that makes OLS estimators the best estimators. 

To conclude, linear regression is important and widely used, 

and OLS estimation technique is the most prevalent. OLS 

estimators are BLUE (i.e. they are linear, unbiased and 

efficient ,have the least variance among the class of all linear 

and unbiased estimators). Amidst all this, one should not forget 

the Gauss-Markov Theorem (i.e. the estimators of OLS model 

are BLUE) holds only if the assumptions of OLS are satisfied. 

Each assumption that is made while studying OLS adds 

restrictions to the model, but at the same time, also allows to 

make stronger statements regarding OLS. So, whenever we are 

planning to use a linear regression model using OLS, always 

check for the OLS assumptions. If the OLS assumptions are 

satisfied, then life becomes simpler, for we can directly use 

OLS for the best results. 
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1.2.7 Coefficient of Determination/ Goodness of Fit (r
2
) 

Here we are considering the ―goodness of fit‖ of the fitted 

regression line to a set of data. That is, we shall find out how 

well the sample regression line fits the data. For this we are 

using the concept ‗coefficient of determination‘. The 

coefficient of determination, denoted by  r
2
, is the proportion 

of the variations in the dependent variable that is predictable 

from the independent variable. The coefficient of 

determination is a statistical measurement that examines how 

differences in one variable can be explained by the difference 

in a second variable, when predicting the outcome of a given 

event. In other words, this coefficient, which is more 

commonly known as r
2
, assesses how strong the linear 

relationship is between two variables. The coefficient of 

determination is used to explain how much variability of one 

factor can be caused by its relationship to another factor. 

It is clear that, if all the observations were lie on the regression 

line, we would obtain a ‗perfect fit‘. But it is a rare case. This 

coefficient is commonly known as r
2
 and is sometimes referred 

to as the "goodness of fit." r
2
 is simply the square of the 

sample correlation coefficient (i.e., r) between the observed 

outcomes and the observed predictor values. This measure is 

represented as a value between 0.0 and 1.0 (0≤ r
2 

≤1), where a 

value of 1.0 indicates a perfect fit, and is thus a highly reliable 

model for future forecasts, while a value of 0.0 would indicate 

that the model fails to accurately model the data at all.  

We can show the goodness of fit of a regression line through 

the graph (Figure 1.9) and from that we can calculate the value 

of r
2
. 
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Figure 1.9 Goodness of fit of estimated regression line 

 

There are two lines in Figure 1.9, a horizontal line placed at 

the average response, , and a shallow-sloped estimated 

regression line, . From Figure 1.9, the calculation of sum of 

squares are; 

- Explained Sum of Squares (ESS) quantifies how 

far the estimated sloped regression line, , is from 

the horizontal "no relationship line," the sample 

mean or .  

That is, ESS=  

- Residual sum of Squares (RSS) quantifies how 

much the data points, yi, vary around the estimated 

regression line,  . 

TEERTHANKER MAHAVEER UNIVERSITY



 

  54 

That is, RSS =  

- Total Sum of Squares (TSS) quantifies how much 

the data points, yi, vary around their mean,  

That is, TSS =  

The sum of squares can be better illustrated in Figure 1.10.  

From these sum of squares, r
2
 can be calculated as, 

 r
2
 = ESS/TSS 

That is,        

  Or in other words,  

r
2
 = 1- (RSS/TSS) since ESS+RSS= TSS 

Therefore; 

      

Figure 1.10 Sum of  Squares 
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Here are some basic characteristics of the measure: 

 Since r
2
 is a proportion, it is always a number between 0 

and 1. 

 If r
2
 = 1, all of the data points fall perfectly on the 

regression line. The predictor x accounts for all of the 

variation in yi 

 If r
2
 = 0, the estimated regression line is perfectly 

horizontal. The predictor x accounts for none of the 

variation in yi 

We've learned the interpretation for the two easy cases — 

when r
2
 = 0 or r

2
 = 1 — but, how do we interpret r

2
 when it is 

some number between 0 and 1.  In this situation, the 

coefficient of determination r
2
 can be interpreted as, "r

2
 ×100 

percent of the variation in Y is explained by the variation in 

predictor X."  

1.2.8 Hypothesis Testing 

One important way to make statistical inferences about a 

population parameter, we use hypothesis testing to make 

decisions about the parameter‘s value. Hypothesis testing is an 

act in statistics whereby an analyst tests an assumption 

regarding a population parameter. Hypothesis is in fact an if-

then proposition. The methodology employed for hypothesis 

testing depends on the nature of the data used and the 

objectives to be resolved. Hypothesis testing is used to assess 

the plausibility of a hypothesis by using sample data. Such data 

may come from a larger population, or from a data-generating 

process.  

The null hypothesis (null always indicates zero) is usually a 

hypothesis of equality between population parameters; e.g., a 
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null hypothesis may state that the population mean is equal to 

zero. The alternative hypothesis is effectively the opposite of a 

null hypothesis (e.g., the population mean return is not equal to 

zero). Thus, they are mutually exclusive, and only one can be 

true. However, one of the two hypotheses will always be true. 

There are mainly two ways for proceeding with the testing of a 

hypothesis. 

1. The rejection region method 

To decide between two competing claims, we can conduct a 

hypothesis test as follows. 

 Express the claim about a specific value for the population 

parameter of interest as a null hypothesis, denoted H0. The 

null hypothesis needs to be in the form "parameter = some 

hypothesized value," for example, H0: E(Y) = 255.  

 Express the alternative claim as an alternative hypothesis, 

denoted H1. The alternative hypothesis can be in a lower-

tail form, for example, H1: E(Y) < 255, or an upper-

tail form, for example, H1: E(Y) > 255, or a two-tail form, 

for example, H1: E(Y) ≠ 255. The alternative hypothesis, 

also sometimes called the research hypothesis, is what we 

would like to demonstrate to be the case, and needs to be 

stated before looking at the data.  

 Calculate a test statistic based on the assumption that the 

null hypothesis is true. For testing a univariate population 

mean, the relevant test statistic is t-statistic.  

 Under the assumption that the null hypothesis is true, this 

test statistic will have a particular probability distribution. 

For testing a univariate population mean, this t-statistic has 

a t-distribution with n−1 degrees of freedom. We would 
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therefore expect it to be "close" to zero (if the null 

hypothesis is true). Conversely, if it is far from zero, then 

we might begin to doubt the null hypothesis: 

o For an upper-tail test, a t-statistic that is positive and far 

from zero would then lead us to favor the alternative 

hypothesis (a t-statistic that was far from zero but negative 

would favor neither hypothesis and the test would be 

inconclusive). 

o For a lower-tail test, a t-statistic that is negative and far 

from zero would then lead us to favor the alternative 

hypothesis (a t-statistic that was far from zero but positive 

would favor neither hypothesis and the test would be 

inconclusive). 

o For a two-tail test, any t-statistic that is far from zero 

(positive or negative) would lead us to favor the alternative 

hypothesis. 

 There is always a chance that we might mistakenly reject a 

null hypothesis when it is actually true. Often, this 

chance—called the Level of significance- will be set at 5%, 

but more stringent tests (such as in clinical trials of new 

pharmaceutical drugs) might set this at 1%, while less 

stringent tests (such as in sociological studies) might set 

this at 10%. For the sake of argument, we use 5% as a 

default value for hypothesis tests in this course (unless 

stated otherwise). 

 The significance level dictates the critical value(s) for the 

test, beyond which an observed t-statistic leads to rejection 

of the null hypothesis in favor of the alternative. This 

region, which leads to rejection of the null hypothesis, is 

called the rejection region. For example, for a significance 

level of 5%: 

TEERTHANKER MAHAVEER UNIVERSITY



 

  58 

o For an upper-tail test, the critical value is the 95th 

percentile of the t-distribution with n−1 degrees of 

freedom; reject the null in favor of the alternative if the t-

statistic is greater than this. 

o For a lower-tail test, the critical value is the 5th percentile 

of the t-distribution with n−1 degrees of freedom; reject the 

null in favor of the alternative if the t-statistic is less than 

this. 

o For a two-tail test, the two critical values are the 2.5th and 

the 97.5th percentiles of the t-distribution with n−1 degrees 

of freedom; reject the null in favor of the alternative if the 

t-statistic is less than the 2.5th percentile or greater than the 

97.5th percentile. 

2. The p-value method 

An alternative way to conduct a hypothesis test, firstly we 

assume again that the null hypothesis is true, but then to 

calculate the probability of observing a t-statistic as extreme as 

the one observed or even more extreme (in the direction that 

favors the alternative hypothesis). This is known as the p-

value (sometimes also called the observed significance level): 

 For an upper-tail test, the p-value is the area under the 

curve of the t-distribution (with n−1 degrees of freedom) to 

the right of the observed t-statistic. 

 For a lower-tail test, the p-value is the area under the curve 

of the t-distribution (with n−1 degrees of freedom) to the 

left of the observed t-statistic. 

 For a two-tail test, the p-value is the sum of the areas under 

the curve of the t-distribution (with n−1 degrees of 

freedom) beyond both the observed t-statistic and the 

negative of the observed t-statistic. 
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If the p-value is too "small," then this suggests that it seems 

unlikely that the null hypothesis could have been true—so we 

reject it in favor of the alternative. Otherwise, the t-statistic 

could well have arisen while the null hypothesis held true—so 

we do not reject it in favor of the alternative. Again, the 

significance level chosen tells us how small is small: If the p-

value is less than the significance level, then reject the null in 

favor of the alternative; otherwise, do not reject it. 

1.2.8.1 ‘t’ test 

The‘ t test is usually used to conduct hypothesis tests on the 

regression coefficients (βs) obtained from simple linear 

regression. A statistic based on the ‗t‘ distribution is used to 

test the two-sided hypothesis that the true slope, β1, equals 

some constant value, β1,0. The statements for the hypothesis 

test are expressed as: 

 

The test statistic used for this test is: 

 

where is the least square estimate of β1, and se( ) is its 

standard error. The value of se( ) can be calculated as 

follows: 
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The test statistic, T0 , follows a t distribution with (n−2) 

degrees of freedom, where n is the total number of 

observations. The null hypothesis, H0, is accepted if the 

calculated value of the test statistic is such that: 

  

where tα/2,n−2 and −tα/2,n−2 are the critical values for the 

two-sided hypothesis. tα/2,n−2 is the percentile of 

the t distribution corresponding to a cumulative probability 

of (1−α/2) and α is the significance level. 

If the value of β1,0 is zero, then the hypothesis tests for the 

significance of regression. In other words, the test indicates if 

the fitted regression model is significant in explaining 

variations in the observations or if you are trying to impose a 

regression model when no true relationship exists 

between x and Y. Failure to reject H0:β1=0 implies that no 

linear relationship exists between x and Y. This result may be 

obtained when the scatter plots of against are as shown as 

Figure 1.11.  

Figure 1.11 
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In Figure 1.11, figure (a) represents the case where no model 

exits for the observed data. In this case you would be trying to 

fit a regression model to noise or random variation. (b) 

represents the case where the true relationship 

between x and Y is not linear. (c) and (d) represent the case 

when H0:β1=0 is rejected, implying that a model does exist 

between x and Y. (c) represents the case where the linear 

model is sufficient. In the following figure, (d) represents the 

case where a higher order model may be needed. 

A similar procedure can be used to test the hypothesis on the 

intercept. The test statistic used in this case is: 

  

where is the least square estimate of β0, and se( ) is its 

standard error which is calculated using: 
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1.2.8.2 F test 

 F-test is any statistical test in which the test statistic follows 

an F-distribution under the null hypothesis. It is most often 

used when comparing statistical models that have been fitted to 

a data set, in order to identify the model that best fits 

the population from which the data were sampled. Exact "F-

tests" mainly arise when the models have been fitted to the 

data using least squares. The name was coined by George W. 

Snedecor, in honour of Sir Ronald A. Fisher. Fisher initially 

developed the statistic as the variance ratio in the 1920s. 

Common examples of the use of F-tests include the study of 

the following cases: 

 For checking the overall significance of the fitted 

regression model. 

 The hypothesis that the means of a given set of normally 

distributed populations, all having the same standard 

deviation, are equal. This is perhaps the best-known F-test, 

and plays an important role in the analysis of 

variance (ANOVA). 

 The hypothesis that a proposed regression model fits 

the data well. See Lack-of-fit sum of squares. 

 The hypothesis that a data set in a regression 

analysis follows the simpler of two proposed linear models 

that are nested within each other. 

In addition, some statistical procedures, such as Scheffé's 

method for multiple comparisons adjustment in linear models, 

also use F-tests. 

In Simple Linear regression model we are using F test for 

testing the overall significance of the model. The F-test of 
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overall significance indicates whether your linear regression 

model provides a better fit to the data than a model that 

contains no independent variables. The overall F-test compares 

the model that you specify to the model with no independent 

variables. This type of model is also known as an intercept-

only model. 

The F-test for testing the overall significance of the model is 

build on the following two hypotheses: 

o The null hypothesis states that the model with no 

independent variables fits the data as well as your model. 

o The alternative hypothesis says that your model fits the 

data better than the intercept-only model. 

In statistical output, you can find the overall F-test in the 

ANOVA table. An example is below. 

 

Compare the p-value for the F-test to the pre 

decided significance level. If the p-value is less than the 

significance level, the sample data provide sufficient evidence 

to conclude that our regression model fits the data better than 

the model with no independent variables. 

This finding is good because it means that the independent 

variables in our model proved to be a better fit in the model. 
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Generally speaking, if none of the independent variables are 

statistically significant, the overall F-test is also not 

statistically significant. Occasionally, the tests can produce 

conflicting results. Such problems may creep because the F-

test of overall significance assesses all of the coefficients 

jointly whereas the t-test for each coefficient examines them 

individually. For example, the overall F-test can find that the 

coefficients are significant jointly while the t-tests can fail to 

find significance individually (when individual βs are 

insignificant based on ‘t’.). 

These conflicting test results can be hard to understand, but 

think about it this way. The F-test sums the predictive 

power of all independent variables and determines that it is 

unlikely that all of the coefficients equal zero. However, it‘s 

possible that each variable isn‘t predictive enough on its own 

to be statistically significant. In other words, our sample 

provides sufficient evidence to conclude that our model is 

significant, but not enough to conclude that any individual 

variable is significant. 

1.2.8.3 Practical versus Theoretical Significance 

Theoretical /Statistical significance refer to of how 

much probabilistically certain you are about an event. If such 

event is statistically significant, it means that it is highly 

important in mathematical terms. E.g. when you get a very 

low p-value in a test, that's statistically significant because 

observing such a unusual high (/low) value is very unlikely 

(given your null hypothesis). 

Practical significance refers to the empirical impact that such 

event has in real life. Obviously, the threshold to define 

practical significance vary between situations. While statistical 
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significance relates to whether an effect exists, practical 

significance refers to the magnitude of the effect.  

1.2.9 Method of Maximum Likelihood 

We start with the statistical model, which is the Gaussian-noise 

simple linear regression model, defined as follows: 

1. The distribution of X is arbitrary (and perhaps X is even 

non-random). 

2. If X = x, then Y = , for some constants 

(―coefficients" or ―parameters") , and some 

random noise variable ϵ. 

3. , and is independent of X. 

4. ϵ is independent across observations. 

A consequence of these assumptions is that the response 

variable Y is independent across observations, conditional on 

the predictor X, i.e., Y1 and Y2 are independent given X1 and 

X2. 

As you'll recall, this is a special case of the simple linear 

regression model: the first two assumptions are the same, but 

we are now assuming much more about the noise variable ϵ: 

it's not just mean zero with constant variance, but it has a 

particular distribution (Gaussian), and everything we said was 

uncorrelated before we now strengthen to independence. 

Because of these stronger assumptions, the model tells us the 

conditional probability density function (pdf) of Y for each x, 

. (This notation separates the random 

variables from the parameters.) Given any data set (x1; y1); 

(x2; y2); .......... (xn; yn), we can now write down the 

probability density, under the model, of seeing that data: 
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In multiplying together the probabilities like this, we are using 

the independence of the Yi. When we see the data, we do not 

known the true parameters, but any guess at them, say (b0; b1; 

s
2
), gives us a probability density: 

 

This is the likelihood, a function of the parameter values. It's 

just as informative, and much more convenient, to work with 

the log-likelihood, 

 

In the method of maximum likelihood, we pick the parameter 

values which maximize the likelihood, or, equivalently, 

maximize the log-likelihood. For that, we are using the 

maximising principle of a function. For that we are firstly 

differentiating equation (30 with respect to the parameters b0, 

b1 and s
2
. After some calculus, this gives us the following 

estimators: 
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As it is clearly noted, the estimators for the slope and the 

intercept exactly match the least squares estimators. This is a 

special property of assuming independent Gaussian noise. 

Similarly,  is exactly the in-sample mean squared error. 
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Module II:  

Multiple Regression Analysis 

So far, we have seen the concept of simple linear regression 

where a single independent/predictor variable X was used to 

model the dependent/response variable Y. Practically, there 

will be more than one independent variable that influences the 

response variable. Multiple regression models thus predict how 

a single response variable Y depends linearly on a number of 

predictor variables. Examples:  

•  The selling price of a house can depend on the desirability 

of the location, the number of bedrooms, the number of 

bathrooms, the year the house was built, the square footage 

and a number of other factors.  

•  The height of a child can depend on the height of the 

mother, the height of the father, nutrition, and 

environmental factors. 

That is, we use the adjective "simple" to denote that our model 

has only predictor, and we use the adjective "multiple" to 

indicate that our model has at least two predictors. The models 

have similar "LINE" assumptions. The only real difference is 

that whereas in simple linear regression we think of the 

distribution of errors at a fixed value of the single predictor, 

with multiple linear regressions we have to think of the 

distribution of errors at a fixed set of values for all the 

predictors. The entire model checking procedures we learned 

earlier is useful in the multiple linear regression frameworks, 

although the process becomes more involved since we now 

have multiple predictors. A population model for a multiple 

linear regression model that relates a y-variable to k number of 
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x-variables is written as, 

yi=β0+β1xi1,1+β2xi2+…+βk  xik+ϵi. 

Here we're using "k" for the number of predictor variables, 

which means we have k+1 regression parameters 

(the β coefficients). 

We assume that the ϵi have a normal distribution with mean 0 

and constant variance σ2. These are the same assumptions that 

we used in simple regression with one x-variable. 

The subscript i refers to the ith individual or unit in the 

population. In the notation for the x-variables, the subscript 

following i(1,2...k) simply denotes which x-variable it is. 

The word "linear" in "multiple linear regression" refers to the 

fact that the model is linear in the parameters, β0,β1,…,βk. This 

simply means that each parameter multiplies an x-variable, 

while the regression function is a sum of these "parameter 

times x-variable" terms. Each x-variable can be a predictor 

variable or a transformation of predictor variables (such as the 

square of a predictor variable or two predictor variables 

multiplied together). Allowing non-linear transformation of 

predictor variables like this enables the multiple linear 

regression models to represent non-linear relationships 

between the response variable and the predictor variables.  

The simplest form of multiple regression models is the three 

variable regression models which we are going to study in 

detail in the following session. 

2.1 The Three Variable Regression Model 

The simplest multiple regression model for two predictor 

variables is;  
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y = β0 + β1x1 + β2x2 + u.........(1) 

where 

β0 is the intercept. 

β1measures the change in y with respect to x1, holding 

other factors fixed. 

β2 measures the change in y with respect to x2, holding 

other factors fixed. 

In short, a partial regression coefficient reflects the effects of 

one explanatory variable on the mean value of the dependant 

variable when the values of other explanatory variables 

included in the model are held constant. 

By generalising, the three variable multiple regression model 

can be written as; 

yi = β0 + β1xi1 + β2xi2 + ui.........(2) 

In the model with two independent variables, the key 

assumption about how u is related to x1 and x2 is; 

E (u/x1,x2) = 0 .............(3) 

It means that, for any values of x1 and x2 in the population, the 

average of the unobserved factors is equal to zero. Given all 

other assumptions of classical model, it follows that, on taking 

the conditional expectation of y on both sides of the equation 

(2), we have; 

E(yi/ x1i, x2i) = β0 + β1xi1 + β2xi2 .........(4) 

The equation gives, the conditional mean or expected value of 

y conditional upon the given or fixed values of the variables x2 

and x3. Therefore, as in the two variable case, multiple 

regression analysis is a regression analysis conditional upon 
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the fixed values of the explanatory variables, and what we 

obtain is the average or mean value of y or mean response of y 

for the fixed values of x variables. 

2.2 OLS Estimation of Partial Regression Coefficients 

To estimate the parameters of the three variable regression 

model we consider the method of OLS. To find the OLS 

estimators, let us first write the sample regression function 

(SRF) corresponding to our PRF. 

 PRF:  yi = β0 + β1xi1 + β2xi2+ ui.........(2) 

SRF:  Yi = +ûi..............(5) 

From this we have, 

 ...............(6) 

 

But how do we obtain ? The method of ordinary 

least squares chooses the estimates to minimize the sum of 

squared residuals. That is, given n observations on y, x1, and 

x2, {(xi1, xi2, yi): i = 1, 2, …, n}, the estimates  

are chosen simultaneously to make the error sum of squares as 

small as possible. The error sum of squares is given as; 

...............(7) 

The most straight forward procedure to obtain the estimators 

that will minimise Residual sum of Squares (RSS) is to 
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differentiate it with respect to the unknowns and set the 

resulting expression equal to zero and finally solve them 

simultaneously. This procedure gives the normal equations as; 

  

By simple algebraic manipulations of the preceding equations 

or simply by solving these normal equations, we obtain, 

 

Where; 

    

2.3 Multiple coefficient of determination  

(R
2
 and Adjusted R

2
( ) 

Let R be the multiple correlation coefficient between y , and 

x1,x2,....xk, Then square of multiple correlation coefficient (R
2
 ) 

is called a coefficient of determination. The value of R
2
 

commonly describes how well the sample regression line fits 

the observed data. This is also treated as a measure of 

goodness of fit of the model. 
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Assuming that the intercept term is present in the model as 

  

Then, 

  

Where; 

SSres = sum of squares due to residuals, 

SST = total sum of squares 

SS reg = sum of squares due to regression. 

R
2 

measures the explanatory power of the model, which in turn 

reflects the goodness of fit of the model. It reflects the model 

adequacy in the sense of how much is the explanatory power 

of the explanatory variables. 

The limits of R
2
 are 0 and 1, i.e., 

0 ≤ R
2
 ≤1. 

R
2
 = 0 indicates the poorest fit of the model. 

R
2
 =1 indicates the best fit of the model 

R
2
 = 0.95 indicates that 95% of the variation in y is 

explained by R
2
. In simple words, the model is 95% good. 

Similarly, any other value of R
2
 between 0 and 1 indicates the 

adequacy of the fitted model. 

Adjusted R
2
 

If more explanatory variables are added to the model, then R
2
 

increases. In case the variables are irrelevant, then R
2
 will still 
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increase and gives an overly optimistic picture.With a purpose 

of correction in the overly optimistic picture, adjusted R
2
, 

denoted as  or adj R
2
 is used which is defined as, 

  

We will see later that (n - k) and (n -1) are the degrees of 

freedom associated with the distributions of  SSres and SST. 

Moreover, the quantities  are based on the 

unbiased estimators of respective variances of e and y in the 

context of analysis of variance. 

The adjusted R
2
 will decline if the addition if an extra variable 

produces too small a reduction in (1- R
2
) to compensate for the 

increase in . Another limitation of adjusted R
2
 is that it 

can be negative also. For example, if k = 3, n =10, R2 =0.16, 

then 

 which has no interpretation. 

Limitations of R
2
 

1.  If the constant term is absent in the model, then R
2 

cannot 

be defined. In such cases, R
2
 can be negative. Some ad-

hoc measures based on R
2
 for regression line through 

origin have been proposed in the literature. 

2.  R
2
 is sensitive to extreme values, so R

2
 lacks robustness. 

3.  R
2
 always increases with an increase in the number of 

explanatory variables in the model. The main drawback of 

this property is that even when the irrelevant explanatory 
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variables are added in the model, R
2
 still increases. This 

indicates that the model is getting better, which is not 

really correct. 

2.4 Testing of Hypothesis - F test 

There are several important questions which can be answered 

through the test of hypothesis concerning the regression 

coefficients. For example, 

1.  What is the overall adequacy of the model? 

2.  Which specific explanatory variables seem to be 

important? etc. 

In order the answer such questions, we first develop the test of 

hypothesis for a general framework, viz., general linear 

hypothesis. Then several tests of hypothesis can be derived as 

its special cases. Here we are considering the Test of 

significance of regression (Analysis of variance). 

Under ANOVA, 

H0: β2=β3=........βk=0 

Against the alternative hypothesis 

H1: βj≠0, for at least one j = 2,3,..., k 

This hypothesis determines if there is a linear relationship 

between y and any set of the explanatory variables X2, 

X3,......Xk,  

Notice that X1 corresponds to the intercept term in the model 

and hence xi1=1  for all i= 1, 2,...,n . 

This particular hypothesis explains the goodness of fit. It tells 

whether βi has a linear effect or not and are they of any 

importance. It also tests that X2, X3,......Xk have no influence in 

the determination of y .  
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Here; 

β1= 0 is excluded because this involves additional implication 

that the mean level of y is zero. Our main concern is to know 

whether the explanatory variables help to explain the variation 

in y around its mean value or not. 

This is an overall or global test of model adequacy. Rejection 

of the null hypothesis indicates that at least one of the 

explanatory variables among X2, X3,......Xk contributes 

significantly to the model. This is called as analysis of 

variance(ANOVA).  

  

The decision rule is to reject at α level of significance 

whenever 

  

The calculation of F -statistic can be summarized in the form 

of an analysis of variance (ANOVA) table given as follows: 

 

Rejection of 0 H indicates that it is likely that at least one βi≠0, 

(i=1,2,....k) 
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2.5 Restricted least squares 

There are occasions where economic theory may suggest that 

the coefficients in a regression model satisfy some linear 

equality restrictions. For instance, consider the Cobb-Douglas 

production function, 

  

Where, 

Yi= output 

X2= labour input 

X3= Capital input 

Taking the natural logarithm on both sides we have, 

Ln Yi = Ln β1 + β2 Ln X2i+ β3 LnX3i+ui Ln e ....(2) 

Ln Yi = β0+ β2 Ln X2i+ β3 LnX3i+ui .........(3) 

 Where, 

  β0= Ln β1 and  

  Ln e = 1 

The simplest procedure is to estimate equation (3) is run the 

OLS. This is called the unrestricted or unconstrained 

regression. 

Now if there are constant returns to scale, economic theory 

would suggest that, 

 β2 + β3 =1......(4) 

This is a linear equality restriction. 

When estimating equation (3) by considering this linear 

equality restriction (equation 4) explicitly it is called, restricted 
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or constrained regression or Restricted Least Square (RLS) 

when we are using OLS for estimation. 

How does one find out if there are constant returns to scale? 

that is, if the restriction is valid? For this there are two 

approaches,  

1. The ‗t‘ test approach and  

2. The ‗F‘ test approach  

 The t-test approach  

 For applying the t-test approach for checking the validity of 

the linear restriction, we first estimate the  by 

using the OLS method. Then a test of hypothesis can be 

conducted by the ‗t‘ test equation as, 

  ............(5) 

or 

...... (6) 

    Where; β2 + β3 =1 

 If the t value computed from equation (6) exceeds the critical t 

value at the chosen level of significance we reject the 

hypothesis of constant returns to scale otherwise accept it. 

The ‘F’ test approach  

The ‗t‘ test procedure is a kind of post-mortem examination 

because we try to find out whether the linear restriction is 
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satisfied after estimating the unrestricted regression. A direct 

approach would be to incorporate the restriction into the 

estimation procedure at the outset. This procedure can be done 

easily as, 

 From  equation (4) we have ; 

 β2 = 1- β3 ...........(7) or 

 β3 = 1- β2 ...........(8) 

Therefore using either of these equalities, we can eliminate one 

of the coefficients in equation (3). Thus we can write the 

Cobb-Douglas production function as; 

  Ln Yi = β0+ (1- β3) Ln X2i+ β3 LnX3i+ui 

  Ln Yi = β0+ Ln X2i - β3Ln X2i+ β3 LnX3i+ui 

  Ln Yi = β0+ Ln X2i + β3 (Ln X3i- LnX2i) +ui 

  (Ln Yi - LnX2i) = β0+ β3 (Ln X3i- LnX2i) +ui......( 9) or 

  Ln (Yi /X2i) = β0+ β3 (Ln X3i / X2i) +ui......(10) 

   Where, 

   Yi /X2i = output-labour ratio & 

   X3i / X2i = capital-labour ratio 

These two quantities have great economic importance. The 

transformed model of Cobb-Douglas production function 

incorporates the linearity restriction. This procedure will 

guarantee that the sum of the estimated coefficients of the two 

inputs will be equal to 1(ie, β2 + β3 =1). Once we estimate from 

equation (9) by using OLS or from equation (10) β2 can be 

easily estimated from the relation (7). This procedure outlined 

in equation (9) or equation (10) is known as Restricted Least 

Squares. This procedure can be generalized to models 
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containing any number of explanatory variables and more than 

one linear equality restriction. 

How do we compare the unrestricted and restricted least square 

regression? In other words, how do we know that the 

restriction is valid? By applying ‗F‘ test we can do this. For 

this, 

Let, 

 Ʃû
2

UR = Residual Sum of Squares (RSS) of unrestricted 

regression (3) 

Ʃû
2

R =  RSS of restricted regression (9) 

m = number of linear restrictions 

k = number of parameters in the unrestricted regression 

n = number of observations 

 Then, 

  

Or 

  

Follows the ‗F‘ distribution with m, (n-k) degrees of freedom. 

If computed ‗F‘ exceeds critical ‗F‘ we reject the hypothesis of 

validity of restriction and otherwise accept it. 

2.6 Chow test 

The Chow test is a statistical and econometric test used to 

check whether the coefficients in two linear regressions on 
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different data sets are equal. The Chow test was invented by 

economist Gregory Chow. In econometrics, the Chow test is 

most commonly used in time series analysis to test for the 

presence of a structural break. In program evaluation, the 

Chow test is often used to determine whether the independent 

variables have different impacts on different subgroups of the 

population. These two are shown in Figure 2.1 

Figure 2.1 Chow Test 

 

Suppose that we model our data as, 

  

If we split our data into two groups, then we have, 
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The null hypothesis of the Chow test asserts that , 

a1 = a2, b1 = b2, and c1 = c2.  

Let, 

 SC be the Sum of Squared Residuals from the 

combined data,  

 S1 be the Sum of Squared Residuals from the first 

group, and  

 S2 be the Sum of Squared Residuals from the second 

group.  

 N1 and N2 are the number of observations in each 

group and k is the total number of parameters (in this 

case, 3).  

Then the Chow test statistic is, 

 

The test statistic follows the F distribution with k and N1 + N2 

− 2k degrees of freedom. 

2.7 Matrix approach to Multiple Regressions 

Using the matrix approach to multiple regressions we are 

explaining mainly three concepts in matrix notation. They are; 

 General k- variable regression model 

 Assumptions of CLRM 

 Estimation of Multiple Regression Model 

 BLUE properties of OLS estimators in the case of 

multiple regressions. 
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2.7.1 General k variable regression model 

The general multiple linear regression model has k = K−1 

regressors; its PRF is written as  

 

Here, total number of regression coefficients = K and the 

number of slope coefficients = k = K − 1. 

the n-sets of observations are also assumed to follow the same 

model. Thus they satisfy, 

 

These n equations can be written as; 

 

In general, the model with k explanatory variables can be 

expressed as; 

  

where y= (y1,y2,....yn) is a n˟1 vector of n observation on study 

variable. 

 is the matrix notation of general k variable 

multiple regression model where; 
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is a n˟k matrix of n observations on each of the k explanatory 

variables, is a k ˟1 

vector of regression coefficients and  is a 

n˟1 vector of random error components or disturbance term. 

If intercept term is present, take first column of X to be 

(1,1,…,1) 

2.7.2 Assumptions of CLRM in Matrix notation 

Some assumptions are needed in the model y = Xβ+ϵ for 

drawing the statistical inferences. The following assumptions 

are made: 

 

These assumptions are used to study the statistical properties 

of the estimator of regression coefficients. The following 

assumption is required to study, particularly the large sample 

properties of the estimators. 

exists and is a non-stochastic and 

non-singular matrix (with finite elements). 

The explanatory variables can also be stochastic in some cases. 
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We assume that X is non-stochastic unless stated separately. 

We consider the problems of estimation and testing of 

hypothesis on regression coefficient vector under the stated 

assumption. 

2.7.3 Estimation of Multiple regression Model (OLS) 

Let B be the set of all possible vectors β. If there is no further 

information, the B is k -dimensional real Euclidean space. The 

object is to find a vector b
‘
 = (b1,b2,....bk) from B that 

minimizes the sum of squared deviations of ϵi ‗s i.e., 

 

for given y and X. A minimum will always exist as S(β) is a 

real-valued, convex and differentiable function. Write 

  

Differentiate S(β) with respect to β 

 

The normal equation is 

  

where the following result is used: 

Result: If f (z) = Z ' AZ is a quadratic form, Z is a m˟1 vector 

and A is any m˟m symmetric matrix 

Then, 
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Since it is assumed that rank (X ) = k (full rank), then X ' X is a 

positive definite and unique solution of the normal equation is, 

  

which is termed as ordinary least squares estimator (OLSE) 

of β. 

Since is at least non-negative definite, so b minimize 

S(β) . 

2.7.4 Properties of OLS estimators 

(i) Estimation error: 

The estimation error of b is‘ 

  

(ii) Bias 

Since X is assumed to be nonstochastic and E(ϵ) = 0 

  

Thus OLS estimator is an unbiased estimator of β. 

(iii) Covariance matrix 

The covariance matrix of b is 
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(iv) Variance 

The variance of b can be obtained as the sum of variances of 

all b1,b2....bk which is the trace of covariance matrix of b . 

Thus, 

  

(v) Gauss-Markov Theorem: 

The ordinary least squares estimator (OLSE) is the best linear 

unbiased estimator (BLUE) of β. 

Proof: The OLSE of β is‘  

  

which is a linear function of y . Consider the arbitrary linear 

estimator of linear parametric function where 

the elements of a are arbitrary constants. Then for b* 

  

and so b* is an unbiased estimator of when 
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Since we wish to consider only those estimators that are linear 

and unbiased, so we restrict ourselves to those estimators for 

which  

Further, 

  

Consider, 

  

Since (I -H) is a positive semi-definite matrix, so 

 

This reveals that if b* is any linear unbiased estimator then its 

variance must be no smaller than that of b. 

Consequently b is the best linear unbiased estimator, where 

‗best‘ refers to the fact that b is efficient within the class of 

linear and unbiased estimators. 
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Module III  

Econometric Problems 

 

The   simplest   econometric   model   is   the   ordinary   least   

square   model   (OLS).   This   model minimizes the sum of 

squared errors (deviation between actual values and estimated 

values of the dependent variable). The classical linear 

regression model (CLRM) is buit upon some important 

assumptions.  

By relaxing these assumptions of CLRM, we are confronted 

with some econometric problems. Major econometric 

problems arises when we relax these assumptions of CLRM 

are; 

1. Hetroscedasticity 

2. Autocorrelation and  

3. Multicollinearity 

3.1. Hetroscedasticity 

The classical linear regression model is that the disturbances ui 

appearing in the population regression function are 

homoscedastic; that is,  they all have the same variance. In this 

lesson we examine the validity of this assumption and find out 

what happens if this assumption is not fulfilled. We seek 

answers to the following questions:  

 What is the nature of heteroscedasticity?  

 What are its consequences?  

 How can we detect it?  

 What are the remedial measures? 
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3.1.1 Nature of Heteroscedasticity 

Where the conditional variance of the Y population varies with 

X, this situation is known appropriately as heteroscedasticity 

or unequal spread or variance. That is, 

 

We can illustrate the problem of Hetroscedasticity as in Figure 

3.1. 

Figure 3.1 Hetroscedasticity 

 

3.1.2 Reasons for Hetroscedasticity 

Various reasons for the origin of Hetroscedasticity are; 

1.  In an error learning model, as people learn, their error of 

behaviour become smaller over time.  

2.  As income grows, people have more discretionary income 

& hence more scope for choice about the disposition of 

their income.  

3.  As data collecting techniques increases σi
2
 is likely to 

decrease.  

4.  If can also arise as a result of the presence of collinear.  
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5.  If there is skewness in the distribution of one or more 

regressors included in the model, there is chances of 

hetroscedasticity.  

6.  Incorrect data transformation.  

7.  Incorrect functional form.  

3.1.3 Consequences of Heteroscedasticity 

In the presence of Heteroscedasticity, we can estimate our 

regression model and find out the parameters of the model as; 

  

  

By using the SRF, 

 Yi = +ui 

Applying the usual formula the OLS estimator  is  

 =  

  

  

Under CLRM, these OLS estimators are BLUE. Now with 

Heteroscedasticity, the consequences are; 

1.  OLS estimators are still linear 

2.  OLS estimators are still unbiased 
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3.  But they no longer have minimum variance. That is, they 

are no longer efficient. In short, OLS estimators are no 

longer BLUE in small as well as in large samples. 

4.  The usual formula to estimate variances of OLS 

estimators are generally biased. The usual formula is, 

 

Because of heteroscedasticity we cannot use this formula.  

Instead, 

 Var( ) = 
Ʃ      

 Ʃ     
  is used. 

A positive bias occurs if OLS overestimates the true variance 

of estimator and the negative bias occurs if OLS underestimate 

the true variance of estimator. 

5.  The bias arises from the fact that the conventional 

estimator of true σ
2
 is no longer and unbiased estimator 

of     

6.  As a result the usual confidence intervals and hypothesis 

tests based on t and F distributions are unreliable. If 

conventional testing procedures are employed there is a 

possibility of drawing wrong conclusions 

In short, in the presence of Heteroscedasticity OLS estimators 

are no longer BLUE. So we rely on other methods like 

Generalized Least Square (GLS) for estimation.  Similarly, 

ordinary testing of hypothesis is not reliable raising the 

possibility of drawing wrong conclusions. Therefore it is 

essential to detect and solve the problem of Heteroscedasticity 

before estimation. 
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3.1.4 Detection of Heteroscedasticity 

It is noted that there are no hard and fast rules for detecting 

Heteroscedasticity and we have only a few rules of thumb. But 

this situation is inevitable because     can be known only if 

we have the entire Y population corresponding to the chosen 

X‘s. But such data is a rare case in most economic 

investigations.  Therefore in most cases, involving economic 

investigations Heteroscedasticity may be a matter of intuition, 

educated guess work, prior empirical experience, or sheer 

speculation. 

Let us examine some of the informal and formal methods of 

detecting Heteroscedasticity. Most of these methods are based 

on the examination of the OLS residuals ûi since they are the 

one we observe, and by hoping they are the good estimates of 

disturbances ui. 

Informal Methods  

1. Nature of Problem: - Very often nature of the problem 

under consideration suggests whether Heteroscedasticity is 

likely to be encountered. Based on the past studies, one can 

analyse the nature of hetroscedasticity in the surveys. Now one 

generally assumes that in similar surveys one can expect 

unequal variances among the disturbances. As a matter of fact, 

in cross-sectional data involving heterogeneous units, 

hetroscedasticity may be the rule rather than exception.  

2. Graphical Method: - If there is no empirical information 

about the nature of Heteroscedasticity, in practice one can do 

the regression analysis on the assumption that there is no 

Heteroscedasticity & then do a post-mortem examination of 

the residual squared ûi
2
 to see if they exhibit any systematic 

pattern. Although ûi
2 

are not the same thing as ui
2
, they can be 
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used as proxies especially if the sample size is sufficiently 

large. 

An examination of the ûi
2 

may reveal the following patterns 

(Figure 3.2). 

Here we are plotting ûi
2
 against the estimated Y values, Ŷi. 

Then we are finding out whether the Ŷi is systematically 

related to ûi
2
. If they show some patterns, it means that there is 

hetroscedasticity. 

Figre 3.2 Detection of Hetroscedasticity 
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In figure ‗a‘, we see that there is no systematic pattern between 

the two variables, suggesting no hetroscedasticity is present in 

data. But from figures ‗b‘ to ‗e‘ they show some patterns and 

therefore there is hetroscedasticity in these data. 

Formal Methods  

1. Park Test: - Park formalized the graphical method by 

suggesting that     is some function of the explanatory 

variable Xi.  

His suggested functions are 

  

Since     is generally not known, Park suggested using ûi, as a 

proxy and running following regression.  

  

If β turn out to be statistically significant, it would suggest that 

Heteroscedasticity is present in the data.  

Then, Park test is a two stage procedure  

a) We run the OLS regression disregarding the 

heteroscedasticity question.  

b)  Run the regression  

2. Glejser Test: - Glejser test is similar to Park test in its spirit. 

After obtaining the residuals ûi from the OLS regression, 

Glejser suggests regressing the absolute values of ûi on the X 

variable that is thought to be closely related with     . Glejser 

suggested the following functional form for this. 
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 ûi   =  

In empirical and practical matters one can use Glejser 

approach. 

3. Spearman’s Rank Correlation Test:- We know that the 

Spearman‘s rank Correlation Coefficient is, 

  

Where, di = difference in the rank  

n= no. of individual 

Assume, Yi = β0+β1Xi+ui 

Then the rank correlation coefficient can be used to detect 

hetroscedasticity as follows: 

Step 1 :- fit the regression line to the data on Y and X and 

obtain the residuals ûi 

Step 2:- taking their absolute value, /ûi/, rank both /ûi/ and Xi or 

Ŷi according to an ascending or descending order and compute 

Spearman‘s rank correlation coefficient. 

Step 3:- assuming that the population rank correlation 

coefficient Ps = 0, and n>8, the significance of the sample rank 

correlation rs can be tested by the ‗t‘ test as follows, 

   
   √   

√    
    with n-2 degrees of freedom 

If the computed ‗t‘ value> critical ‘t‘ value, we accept the 

hypothesis of hetroscedasticity. Otherwise if the computed ‗t‘ 

value < critical ‘t‘ value, we reject the hypothesis of 

hetroscedasticity assumption. 

If the regression model involves more than one X variable, rs 
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can be computed between /ûi/ and each X variables separately 

and can be tested for the statistical significance using ‗t‘ test. 

4. GoldFeld Quandt Test: - One of the popular methods, in 

which of one assumes that the Heteroscedastic variance     is 

positively related to one of the explanatory valuables in the 

regression model. 

  

Suppose    is positively related to Xi as; 

           

Where    is a constant. This equation gave us the idea that, 

    is proportional to the square of the X variable. That is,     

would be larger if X variable become larger. Therefore, 

hetroscedasticity is more likey to be present in the model. 

Remedial Measures for Hetroscedasticity 

 When     is known: The Method of Weighted Least 

Squares 

As we have seen, if     is known, the most straight forward 

method of correcting heteroscedasticity is by means of 

weighted least squares. The estimators thus obtained are 

BLUE. To fit this idea, consider a two variable regression 

model, 

.........(1) 

Assume that, the true error variance     is known. That is, the 

error variance for each observation is known. Now consider 

the following transformation of the model, 

  

  
    

 
  ⁄     

  
  ⁄   

  
  ⁄ ...... (2) 
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That is, we deflate or devide both sides of the regression model 

by the known   . Now let, vi= 
  

  ⁄ where, vi= the transformed 

error term. If vi is homoscedastic, then the transformed 

regression does not suffer from the problem of 

hetroscedasticity. Thus it can be estimated using the usual OLS 

method. Assuming all other assumptions of the CLRM are 

fulfilled, OLS estimators of the parameters in the equation will 

be BLUE and we can then proceed to statistical inference in 

the usual manner. WLS is simply the OLS applied to the 

transformed model. 

 When     is not known: 

If true     are known, we can use the WLS method to obtain 

BLUE estimators. Since the true     are rarely known. 

Therefore, if we want to use the method of WLS, we will have 

to resort to some adhoc assumption about     and transform 

the original regression model so that the transformed model 

satisfies the hetroscedasticity assumption. 

 Re-specification of the model 

Instead of speculating    , a re-specification of the model 

choosing a different functional form can reduce 

hetroscedasticity. For example, instead of running linear 

regression, if we estimate the model in the log form, it often 

reduces hetroscedasticity. 

3.2 Autocorrelation 

There are generally three types of data that are available for 

empirical analysis:  

(1)  Cross section,  

(2)  Time series, and  
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(3)  Combination of cross section and time series, also known 

as pooled data.  

In developing the classical linear regression model (CLRM) 

we made several assumptions. However, we noted that not all 

these assumptions would hold in every type of data. As a 

matter of fact, we saw in the previous section that the 

assumption of homoscedasticity, or equal error variance, may 

not be always tenable in cross-sectional data. In other words, 

cross-sectional data are often plagued by the problem of 

heteroscedasticity.  

However, in cross-section studies, data are often collected on 

the basis of a random sample of cross-sectional units, such as 

households (in a consumption function analysis) or firms (in an 

investment study analysis) so that there is no prior reason to 

believe that the error term pertaining to sample is correlated 

with the error term of another sample. If by chance such a 

correlation is observed in cross-sectional units, it is called 

spatial autocorrelation, that is, correlation in space rather 

than over time.  

However, it is important to remember that, in cross-sectional 

analysis, the ordering of the data must have some logic, or 

economic interest, to make sense of any determination of 

whether (spatial) autocorrelation is present or not. The 

situation, however, is likely to be very different if we are 

dealing with time series data, for the observations in such data 

follow a natural ordering over time so that successive 

observations are likely to exhibit inter-correlations, especially 

if the time interval between successive observations is short, 

such as a day, a week, or a month rather than a year. If you 

observe stock price indexes it is not unusual to find that these 
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indexes move up or down for several days in succession. 

Obviously, in situations like this, the assumption of no auto, or 

serial, correlation in the error terms that underlies the CLRM 

will be violated. This situation is termed as the autocorrelation. 

Here we are interested to explain, 

 The nature of autocorrelation 

 The reasons for autocorrelation 

 Theoretical and practical consequences of autocorrelation 

 The measures to detect the problem of autocorrelation and  

 The measures to solve autocorrelation 

3.2.1 Nature of Autocorrelation 

If there are no correlation between members of series of 

observation ordered in time (as in time series data) or space as 

in cross-sectional data) is known as the assumption of no 

autocorrelation. That is, 

Autocorrelation doesn't exist in the disturbance ui if,  

E(ui, uj) = 0,  if i≠j 

Otherwise, if the disturbance terms of a dataset that are ordered 

in time or space are correlated each other, the situation is 

generally termed as autocorrelation. That is, 

E(ui, uj) ≠ 0,  if i≠j 

Now let us see some possible patterns of auto and no 

autocorrelation as Figure 3.3. 

On the vertical axis of the Figure 3.3, we take both population 

disturbances (u) and its sample counterpart (û) and on the 

horizontal axis time. Then we plot the corresponding points. 
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From the Figure 3.3, Part (a) to Part (d) errors follow some 

systematic patterns. Hence, there is autocorrelation. Bute Part 

(e) reveals no such patterns and hence there is no 

autocorrelation. 

Figure 3.3 Patterns of Autocorrelation 

 

Positive and negative autocorrelation 

Autocorrelation can be positive or negative. The value of 

autocorrelation varies from -1 (for perfectly negative 

autocorrelation) and 1 (for perfectly positive autocorrelation). 

The value closer to 0 is referred to as no autocorrelation.  

Positive autocorrelation occurs when an error of a given sign 

between two values of time series lagged by k followed by an 

error of the same sign. When data exhibiting positive 

autocorrelation is plotted, the points appear in a smooth snake-

like curve, as on the left in Figure 3.4.  
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Figure 3.4 Types of Autocorrelation 

 

Negative autocorrelation occurs when an error of a given sign 

between two values of time series lagged by k followed by an 

error of the different sign. With negative autocorrelation, the 

points form a zigzag pattern if connected, as shown on the 

right of figure 3.3. 

3.2.2 Reasons of Autocorrelation 

The following are the major reasons for autocorrelation. 

1. Inertia: - Silent feature of most of the time series is inertia 

or sluggishness. Well known examples in time series are GNI,  

price Index.  

2. Specification Bias: Excluded variable case: -  Residuals 

(which are estimate of ui) may suggest that same variable that 

were originally candidates but were not included in the model 

for a variety of reasons should be included. 

 

 Yi = Quantity of beef demanded.  
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X2 = Price of beef  

X3 = Consumer income  

X4 = Price of Pork  

t = Time 

After Regression, 

 

3. Specification Bias: Incorrect functional form:-  

For explaining this, first we are taking case of a marginal 

cost function,  

Marginal Costt =  

But instead of this, suppose  we get the following model.  

 

This can be depicted as Figure 3.5. 

Figure 3.4 Specification Bias 

 

4. Cobweb Phenomenon: - The supply of many agricultural 

commodities reflects the so called cobweb Phenomenon. 
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Where supply reacts to price with a lag of one time period 

because supply decisions takes time implement. 

 

5. Lag: - In time series regression model, sometimes the 

lagged value of the dependant variable also included as one of 

the explanatory variable. For example, 

Consumption=  

6. Manipulation of data: - In empirical analysis the raw data 

are often manipulated.  

7. Data Transformation:- Sometimes data transformation leads 

to autocorrelation. For example, 

 

Y = Consumption, X = Income 

 

For empirical purpose, 

 

3.2.3 Consequences of Autocorrelation 

In the presence of autocorrelation one should not use OLS for 

estimation, to establish confidence intervals and to test 

hypothesis. We should use Generalised Least Squares (GLS) 
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method for these purposes. Because in the presence of 

autocorrelation, 

1. The least square estimators are still linear and unbiased. 

2. But they are not efficient compared to the procedures that 

take into account autocorrelation. In short, the usual OLS 

estimators are not BLUE because they do not possess the 

property of minimum variance. 

Apart from this, the other consequences of autocorrelation are; 

3. The estimated variances of OLS estimators are biased. 

Sometimes, the usual formulas to compute the variances 

and standard errors of OLS estimators seriously 

underestimate true variances and standard errors, there by 

inflating ‗t‘ values 

4. Therefore, the usual ‗t‘ and F tests are not generally 

reliable. 

5. The usual formula to compute the error variance is a 

biased estimator of true σ
2 

. 

6. As a consequence, the conventionally computed R
2
 may 

be unreliable measure of true R
2
 

7. The conventionally computed variances and SEs of 

forecast may also be inefficient. 

3.2.4 Detection Measures 

There are varieties of tests to detect autocorrelation. 

1. Graphical Method 

There are various ways of examine the residuals (error) under 

graphical method. 
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a) Time sequence plot (Figure 3.6) 

 

b) Standardized residual (Figure 3.7) 

 

Both figures (Figures 3.6 and 3.7) clearly shows that the 

residuals follow some systematic patterns and hence there is 

autocorrelation. 

2. Runs test 

Initially, we have several residuals that are negative, then there 

is a series of positive residuals, and then there are several 

residuals that are negative. If these residuals were purely 

random, could we observe such a pattern? Intuitively, it seems 
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unlikely. This intuition can be checked by the so-called runs 

test, sometimes also known as the Geary test, a nonparametric 

test. This is also a crude method.  

For the Runs test, let us simply note down the signs of the 

residuals as * or -. Suppose we have these signs as; 

  

We now define a run as an uninterrupted sequence of one 

symbol or attribute, such as + or -. We further define the length 

of a run as the number of elements in it. 

By examining how the runs behave in a strictly random 

sequence of observations, we can derive a test of randomness 

of runs. If there are too many runs, it means that the residuals 

change sign frequently, thus suggesting negative 

autocorrelation. Similarly, if there are too few runs, it suggests 

positive autocorrelation. 

3. Durbin- Watson ‗d‘ Statistic 

It is one of the good methods as the d statistic is based on the 

estimated residuals, which are computed in regression analysis. 

It is defined as; 

 

It is simply the ratio of the sum of squared differences in 

successive residuals to the RSS. It is note that in the ‗d‘ 

statistic, the number of observations is n -1 because one of the 

nation is lost in taking successive differences. 

A great advantage of this statistic is that it is based on the 

estimated residuals, which are routinely computed in 

regression analysis. Because of this advantage it is now a 
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common practice to report the Durbin Watson ‗d‘ along with 

summary statistics such as R
2
, adjusted R

2
, t ratio etc. 

Durbin Watson ‗d‘ statistic is based on some assumptions as  

 The regression model includes an intercept term  

 The explanatory variables the Xs are not stochastic or 

fixed in repeated sampling  

 The disturbances Ut are generated by the first order 

autoregressive scheme  

 The regression model does not include lagged values of 

the dependent variable as one of the explanatory 

variables  

 There are no missing observations in the data  

He expanded the formula of d statistic as follows; 

 ‗d‘=  

Since,  and differ in only one observation they are 

approximately equal.   Therefore setting  

 =  may be written as  

‗d‘  

Now let us define the coefficient of autocorrelation, ρ, which 

can be determined with the help of the sample first-order 

coefficient of autocorrelation,  

   =  

The d statistic become ; 
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Since the value of ρ lies between -1 and + 1 it implies that the 

value of ‗d‘ lies between 0 and 4. That is, 

  

 

3.2.5 Remedial Measures   

1.  Try to find out if the autocorrelation is pure 

autocorrelation or not because of the result of the mis-

specification of the model.  

2.  Transformation of original model, so that in the 

transformed model we do not have the problem of (Pure) 

autocorrelation.  

3.  In case of large sample we can Newey-West method to 

obtain standard error of OLS estimators that are corrected 

for auto correlation.  

4.  In some situation we can continue to use the OLS method.  

3.3 Multicollinearity 

Another important assumption of the Classical Linear 

Regression Model (CLRM) is that there is no Multicollinearity 

among the regressors included in the multiple regression 

models. In practice, one rarely encounters perfect 

multicollinearity but cases of near or very high 

Multicollinearity can be found, where explanatory variables 

are linearly correlated in many instances. 
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The term multicollinearity was coined in 1934 by Ragnar 

Frisch in his book ‗Confluence Analysis‘.Because of strong 

interrelationships among the explanatory variables, it becomes 

difficult to find out how much each of these will influence the 

dependent variable. Usually economic variables are related in 

several ways and because of inter-relationship among the 

explanatory variables, often the statistical results gained from 

them are found to be ambiguous, a multicollinearity problem is 

said to exist. Under this section, we are explaining the nature, 

reasons, consequences, detection measures and ways to solve 

the problem of multicollinearity. 

3.3.1 Nature of Multicollinearity 

Strictly speaking, Multicollinearity refers to the existence of 

more than one exact linear relationships and collinearity refers 

to existence of a single linear relationship. But this distinction 

is rarely maintained in practice and multicollinearity refers to 

both cases. That is it meant the existence of a ‗perfect‘ or exact 

linear relationship among some or all explanatory variables of 

a regression model. For the k variable regression involving 

explanatory variables X1 X2……. Xk (where X1 = 1 for all 

observations to allow for the intercept term), an exact linear 

relationship is said to exist if the following conditions are 

satisfied. 

.........(1)  

Where  are constants such that not all of 

them are zero simultaneously. 

But the chances of obtaining a sample of values where the 

regressors are related in this fashion are rare in practice. Today 

however the term multicollinearity is used in a broader sense 
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to include the case of perfect multicollinearity (as equation 1) 

as well as the case where the X variables are inter-correlated 

but not perfectly so, as follows. 

...........(2) 

 Where,  vi=stochastic error term  

To understand the difference between perfect and less than 

perfect multicollinearity in our example assume that,   

Then equation (1) can be written as, 

 .............(3) 

The equation (3) shows that X2 is exactly linearly related to 

other variables. In this situation the coefficient of correlation 

between X2 and the linear combination on the right side of the 

equation (3) is found to be Unity. 

But in the case of less than perfect multicollinearity by 

assuming , equation (2) can also be written as, 

.........(4) 

Equation (4) shows that X2 is not an exact linear combination 

of other Xs because it is also determined by the stochastic error 

term vi. 

If multicollinearity is perfect, regression coefficients of the X 

variables are indeterminate and their standard errors are 

infinite.  If multicollinearityis less than perfect, regression 

coefficients although determinate, but have large standard 

errors (in relation to the coefficients themselves) which means 
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the coefficients cannot be estimated with much precision or 

accuracy. 

3.3.2 Reasons for or Sources of Multicollinearity  

The major reasons for or sources of Multicollinearity are, 

1.  Generally economic variables tend to move together over 

time. Economic magnitudes are influenced by the same 

factors and in consequence, once these determining 

factors become operative the economic variables show the 

same broad pattern of behaviour over time. Growth and 

trend factors in time series are the most serious cause of 

multicollinearity.  

2.  The use of lagged values of some explanatory variables as 

separate independent variables in the relationship also 

cause multicollinearity. 

3. The data collection technique adopted, for example 

sampling over a limited range of values  

4.  Constraints on the model or in the population being 

sampled  

5.  Model specification errors 

6.  An over determined model, that is the model has more 

explanatory variables than the number of observations.  

3.3.3 Consequences of Multicollinearity  

It can be shown that even if the multicollinearity is very high 

the OLS estimators are still retain the property of BLUE. 

Theoretical consequences  

1.  It is true that even in the case of high multicollinearity, the 

OLS estimators are unbiased, but unbiasedness is a multi 

sample or repeated sampling phenomenon. But this says 
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nothing about the properties of estimators in any given 

sample  

2.  It is true that collinearity does not destroy the property of 

minimum variance in the class of all linear unbiased 

estimators. The OLS estimators have minimum variance 

that is their efficient. But it does not mean that the 

variance of OLS estimator will necessarily be small  

3.  Multicollinearity is essentially a sample phenomenon in 

the sense that even if the X variables are not linearly 

related in the population they may be so related in the 

particular sample  

For these reasons, the fact that the OLS estimators are BLUE 

despite multicollinearity is of little consolation in practice. 

Practical consequences  

1.  Although BLUE, the OLS estimators have large variances 

and co-variances making the precision difficult.  

2.  Because of this, the confidence intervals tend to be much 

wider leading to the acceptance of these zero null 

hypothesis more rapidly.  

3.  Because of this, the‗t‘ ratio of one or more coefficients 

tend to be statically insignificant in the case of  high 

collinearity, the estimated standard error increase 

dramatically by making t values smaller. Therefore, in 

such cases one increasingly accept the null hypothesis  

4.  Although t ratios of one or more coefficients is 

insignificant statistically, the R
2
 (the overall measure of 

goodness of fit) can be very high. That is, on the basis of 

‗t‘ test one or more of the partial slope coefficients are 

statistically insignificant and we accept  
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H0: β2 = β3 = ......... βk =0 

But R
2
 is so high,say 0.9, on the basis of F test one can reject 

H0. That it is one of the signals of multicollinearity - 

insignificant ‗t‘ values, but a high overall R
2
 and a significant 

F value.  

5.  The OLS estimators and their standard errors can be 

sensitive to small changes in the data.  

3.3.4 Detection of Multicollinearity  

Here we are going to detect multicollinearity. Multicollinearity 

is a question of degree and not of kind. The meaningful 

distinction is not between the presence and the absence of 

multicollinearity but between its various degrees. Since 

multicollinearity refers to the degree of relationship between 

explanatory variables that are assumed to be non-stochastic, it 

is a feature of the sample and not of the population. Since 

multicollinearity is a sample phenomenon we do not have one 

unique method of detecting it for measuring its strength. But 

we have some rules of thumb which all the same. Some of 

them are;  

1. High R
2
 but few significant t-ratios  

This is the Classic symptom of multicollinearity. If R
2
 is high 

(R
2
 > 0.8), the F test in most cases will reject H0 (H0 : β‘s are 

zero) but the individual t ratios are in significant and thus 

accept H0. Although this diagnostic is sensible, its 

disadvantage is that it is too strong in the sense that 

multicollinearity is considered as the harmful only when all of 

the influence of the explanatory variables on Y cannot be 

disentangled. 
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2. High pair correlations among regressors  

Another rule of thumb suggested is that if the pair wise or zero 

order correlation coefficient between two regressors is high 

(>0.8) then multicollinearity is a serious problem. It is also 

clear that high zero-order correlations are a sufficient but not a 

necessary condition for the existence of multicollinearity 

because it can exist even the zero order correlation or simple 

correlations are comparatively low. 

But in models involving more than two explanatory variables 

the simple or zero order correlation will not provide an 

unfailing guide in the presence of multicollinearity. In fact, if 

there are only two explanatory variables, the zero order 

correlation will suffice. 

3. Examination of partial correlations 

When there are more than two explanatory variables in the 

model we often relied on the partial correlation for detecting 

multicollinearity.  Thus in the regression analysis of Y on X2 , 

X3 and X4, a finding that R
2

1.234 is very high but r
2

12.34, r
2
13.24 

and r
2

14.23 are comparatively low. It may suggest that the 

variables X2 , X3 and X4 are highly inter-correlated and that at 

least one of these variables is excessively related with another. 

But there is no guarantee that the partial correlations will 

provide an efficient guide to multicollinearity, for it may 

happen that both R
2
 and all the partial correlations are 

sufficiently high. That is, a given partial correlation may be 

compatible with different multicollinearity patterns. 

4. Auxiliary regressions 

Since multicollinearity arise because one or more of the 

regressors are in exact or approximately linear combinations 
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with other regressors. One way of finding out which X variable 

is related to other X variables is to regress each Xi on the 

remaining X variables and compute the corresponding R
2 

(R
2
i). 

Each one of these regressions is called and auxiliary 

regression. Then the relationship established between F and R
2 

in the variable as; 

 R
2

i = 

            
 

     
⁄

              
 

       
⁄

 

Follows the F distribution with (k-2) and (n-k+1) degrees of 

freedom. 

In this equation, 

n = sample size  

k =  number of explanatory variables  

R
2

x1, x2...xk = the coefficient of determination in the regression 

of variable Xi on the remaining X variables. 

If computed F value is greater than critical Fi at the chosen 

level of significance it means that the particular Xi is collinear 

with other Xs and that variable is dropped from the model  

If the computed F is less than the critical Fi we say that it is not 

collinear with other Xs and retain that variable in the model.  

But if there are several complex linear relations this curve 

fitting exercise may not proved to be of much value as it will 

be difficult to identify the separate interrelationships  

Therefore one may adopt Klien‘s rule of thumb instead of 

testing all auxillary R
2
 values. It is suggested that 
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multicollinearity may be a troublesome problem only if the R
2 

obtained from an auxiliary regression is greater than the 

overall R
2  

the one that obtained from the regression of Y on 

Xs. 

5. Eigen values and Condition Index  

Eigen values and Condition Index are widely used to detect 

multicollinearity. From the Eigen values we can derive 

condition number k as, 

    k= Maximum Eigen Value/ Minimum Eigen Value. 

The Conditional Index (CI) is, 

CI = √  = √
                   

                   
 

The rule of thumb for using k and CI for detecting 

multicollinearity is that,  

If k is between 100 and 1000 there is moderate to strong 

multicollinearity and if k is greater than 1000 there is severe 

multicollinearity.  

Alternatively, if Condition Index is in between 10 and 30 if 

there is moderate to strong multicollinearity and if Conditional 

Index is greater than 30 there is severe multicollinearity  

6. Tolerance and Variance Inflation Factor (VIF) 

For k variable regression model (Y, intercept and k–1 

regressors) the variance of a partial regression coefficient is, 

 Var(βj) = (
  

Ʃ   
)  

 

     
  

                        = (
  

Ʃ   
)VIFj 

Variance Inflation Factor (VIF) means the speed with which 
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the variance and co-variance increase and it can be expressed 

as  

 VIF =  
 

      
  (in three variable case) 

Bj = partial regression coefficient of the regressor Xj 

Rj
2
 = R

2
 in the auxiliary regression of the Xj on the remaining  

(k-2) regressors. 

R
2 

increases towards unity as the collinearity of Xj with other 

regresses increases, the VIF also increases and in the limit it 

can be infinite.  

Therefore, VIF can be used as an indicator of multicollinearity. 

The larger the value of VIF the more troublesome or collinear 

is the variables Xj and vice versa. As a rule of thumb, if the 

VIF > 10 of a variable that variable is set to be highly collinear  

Tolerance can also be used to detect multicollinearity. It is 

defined as,  

 TOLj = (1-Rj
2
) 

  = 1- VIFj 

TOLj = 1, If Xj is not correlated with other regressors  

TOLj =0 If Xj is perfectly related to other regressors.  

3.3.5 Remedial measures  

Elimination of the effect of multicollinearity is not an easy 

task. There is no sure fire remedy, but there are only a few 

rules of thumb because it is a sample phenomenon. Besides 

despite near collinearity, OLS estimators still retain their 

BLUE property. The following are the solutions for the 

incidence of multicollinearity. 
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1. A-Priory information  

It is possible that we can have some knowledge of the values 

of one or more parameters from previous empirical work. This 

knowledge can be profitably utilised in the current sample to 

reduce multicollinearity.  

2. Combining cross sectional and time series data  

Another technique to reduce the effect of multicollinearity is to 

combine cross-sectional and time series data, that is, pooling 

the data.  

3. Dropping a variable(s) and specification bias  

One simplest method when faced with severe multicollinearity 

is that to drop one of the collinear variables. Then the model 

becomes highly significant. But dropping a variable from the 

model to alleviate the problem of multicollinearity may lead to 

the specification bias. Hence the remedy may be worse than 

the disease in some situations because where as 

multicollinearity may prevent precise estimation of the 

parameters of the model, omitting a variable may seriously 

mislead us as to the true values of the parameters. The OLS 

estimators are BLUE despite near linearity.  

4. Transformation of the variables  

In Economics, we have time series data and we know that one 

reason for high multicollinearity between economic variables 

is that over time these variables tend to move in the same 

direction. Therefore, the transformation of the model can 

minimise if not solve the problem of collinearity. Commonly 

used transformation technique is first difference form. 

5. Additional or new data  

Multicollinearity is a sample feature not a population problem 
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it is possible that another sample involving the same variables 

collinearity may not be so serious. Sometimes simply 

increasing the sample size may reduce the collinearity 

problem. The larger the data set, the more the variations in the 

series that can be captured.  

6.  Re-thinking the model  

Sometimes a model chosen for empirical analysis is not 

carefully thought out. Some time some important variables 

may be omitted or may be the functional form of the model is 

incorrectly chosen. However a proper specification of the 

model may reduce the problem of multicollinearity. 

7. Other remedies  

Other remedies for multicollinearity are; 

 Factor analysis,  

 Principal component analysis, and 

 Ridge regression etc. 
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Module IV 

Extensions of Two Variables and Dummy 

Variable Regression Model 

 

This module discusses two major topics of the regression 

analysis namely extensions of two variable linear regression 

models and the dummy variable regression model. We can 

examine these two topics in detail here. 

4.1 Extension of the two variable linear regression 

models  

The classical linear regression model requires the parameters 

must be linear and the variables may or may not be linear. But 

we consider only models that are variable in parameters as 

well as in the variables. The models that are linear in 

parameters but not necessarily in the variables are considered 

under the head ‗Extension of the two variable linear regression 

models‘.  

As an extension of two variable linear regressions we have 

mainly three models  

1.  The log linear model  

2.  Semi-log models  

-Log-lin models, and 

  -Lin-log model, and 

3. Reciprocal models 

In all these models we are transforming non-linear models 

which are not linear in variables to a linear model for 

simplicity. Apart from these models we are familiarising 
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regression through origin as a special case of simple linear 

regression model.  

4.1.1 Log linear model and measurement of elasticity 

In the case of log linear model, we are transforming an 

exponential regression model to a linear model. For this first of 

all we are considering an exponential model as; 

                       
      ....................(1) 

This exponential model can also be expressed in terms of 

logarithm as; 

 ln (Yi) =ln (β1) + β2ln (Xi) +ui ln (e) ...........(2) 

  Here; 

ln = natural logarithm whose base is ‗e‘  

Therefore the model becomes; 

 ln (Yi) = ln (β1) + β2ln (Xi) +ui  

(where, loge e =1) 

Substitute α for ln (β1) we have,  

ln (Yi) = α + β2ln (Xi) +ui .................(3) 

Then the model becomes linear in parameters. The linearity 

can be obtained by using logarithm and hence we can apply 

OLS, such models are called log-log or double log or log linear 

models. 

If the assumptions of classical linear regression model are 

fulfilled, the parameters of equation (3) can be obtained by the 

method of OLS by substituting it as; 

Yi* = α + β2 Xi* + ui ..........................(4) 

The OLS estimators  and  thus obtained will be BLUE 
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of α and β2 respectively. 

Important feature of the log linear regression model is that the 

slope of the coefficient of the model β2, measures the elasticity 

of Y with respect to X. That is, the percentage changes in Y for 

a given percentage change in X. Thus, if Y represents the 

quantity of a commodity demanded and X its unit price, β2 

measures the price elasticity of demand which have 

considerable importance in economics. 

Two special features of Log linear model are; 

  - It is a constant elasticity model, and 

- Even though  and  an unbiased estimator of α 

and β2 , β1= antilog ( ) is a biased estimator. 

Constant elasticity model gives a constant total revenue change 

for a given percentage change in price regardless of the 

absolute level of price.The original model and its 

transformation into Log- Linear model can be differentiated as 

Figure 4.1. 

Figure 4.1 Log-linear regression model 

 

TEERTHANKER MAHAVEER UNIVERSITY



 

  124 

That is, the transformative log linear model shows constant 

elasticity. We can compare the original linear model and the 

transformed log linear model using the two slope coefficients, 

In linear model the slope of efficient β2 gives the effect of a 

unit to change in X on the constant absolute change in Y. In 

log linear model the coefficient β2 obtained from the model 

gives the constant percentage change in Y as a result of a 1% 

change in X. 

We can compare the two models to compute an appropriate 

measure of the price elasticity. The price elasticity (E) is given 

as, 

   

From this,  

 Slope = β2 of the linear model. 

In order to obtain price elasticity we have to multiply the slope 

with (X/Y). But the question is that which values of X and Y 

are taken? If we take the average values of X and Y (x   and  ) 

for this purpose we have, 

E = β2 (x  /  ) 

But this result is something contrasts to the price elasticity 

derived from the log linear model. Therefore we always 

depends log linear model for calculating elasticity. The basic 

difference between a linear model and a log linear model is 

that for the log linear models slope and elasticity are the same 
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but for a linear model, 

 E = Slope (X/Y) 

4.1.2 Semi log models  

Semi-log models included log-lin model and lin-log models  

Log-lin model and measurement of growth rate 

In economics, we are often interested in finding out the growth 

rates of GDP, population, money supply, employment, 

productivity, trade deficit etc. Log-lin models are very helpful 

in finding out these growth rates. We can explain this model 

as,  

Suppose, we want to find out the rate of growth of real GDP 

over a period, 

Let, 

Yt = real GDP at the time ‗t‘ 

  Y0 = Initial value of real GDP  

By using the compound interest formula, 

 ..................(1) 

Where, r = Compound rate of growth rate of Y 

Taking natural logarithm on both sides,  

 ln Yt = ln Y0 + t ln (1+r) ...................(2) 

 Substituting, 

 β1 = ln Y0 and 

 β2 = ln Yt 

 We have, 

 ln Yt = β1 + β2 t .............(3) 
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 Adding the disturbance term we have, 

 ln Yt = β1 + β2 t + ut.............(4) 

This model is also linear in parameters like any other 

regression models. The only difference is that the regressand is 

the logarithm of Y and the regressor is time which will take 

values 1, 2, 3 etc. That is, it is a semi log model because only 

one variable in the model (here Y the regressand) appears in 

the logarithmic form is called a log-lin model. One important 

property of this model is that the slope coefficient measures 

the constant proportional or relative change in Y for a given 

absolute change in the values of the regressor, time. 

 That is, here, 

β2 = 
                                 

                                 
  

If we multiply the relative change in Y by 100, it gives the 

percentage change or growth rate in Y for an absolute change 

in X.  

A log-lin model like equation (4) is very useful where the X 

variable is time in some situations such as,  

  β2 = Constant relative change in the variable y 

  100(β2) = Constant percentage change in the variable Y 

If β2 >0 = Rate of growth of variable Y 

 If β2 <0 = Rate of decay of the variable Y 

That is why the models like equation (4) are called constant 

growth models. The growth rate obtained from log-lin models 

is the instantaneous rate of growth (rate of growth at a point of 

time). In order to calculate the compound growth rate, 

 Compound growth rate = {Antilog (β2) -1}100 
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This gives the compound growth rate over a period that we are 

considering for calculation. 

The lin-log model 

A model in which the regressand (dependent variable) is linear 

but the regressors are logarithmic is called a lin log model. A 

lin-log model can be expressed as; 

 Yi = β1 + β2 ln (Xi) + ui............ (1) 

Lin-Log Model is used to find the absolute change in the 

dependent variable for a percentage in the independent 

variable whereas, the log-lin model used to find the percentage 

growth in the dependent variable for an absolute unit change in 

the independent variable. 

 In Lin-log model, 

 Yi = β1 + β2 ln (Xi) + ui 

We can interpret the slope coefficient β2 as, 

 β2 = Change in Y / Change in ln X 

= Change in Y / Relative change in X 

That is, a change in the log of a number is a relative change.  

Symbolically we have; 

 ...............(2) 

That is,  

 .......................(3) 

The equation (3) states that, 
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The absolute change in Y(ΔY) =β2 (relative change in X) 

If the later term of the equation (3) is multiplied by 100 we 

have the absolute change in Y for a percentage change in X. 

4.1.3. Reciprocal models 

Reciprocal Models of regression model are of the following 

type. 

 .................(1) 

 That is, the dependent variable Yt is a function of the 

reciprocal of the independent variable Xt. This model is non-

linear in variable X because it enters inversely or reciprocally, 

the model is linear in β1 and β2 and is therefore a linear 

regression model. 

The basic feature of a reciprocal model is that as X increases 

indefinitely the term β2 (1/X) approaches zero and Y 

approaches the limiting or asymptotic value of β1. The 

reciprocal models have built in them an asymptote or limit 

value that the dependent variable will take when the value of 

the X variable increases indefinitely. Some likely shapes of the 

curve corresponding to the reciprocal models are shown as in 

Figure 4.2. 

Figure 4.2 Reciprocal Models 

 

TEERTHANKER MAHAVEER UNIVERSITY



 

  129 

One of the important applications of the reciprocal model is 

Philips curve. Using the data on percentage rate of change of 

money wages and employment rate for UK for the period 1861 

to 1957, Phillips update a curve whose general shape is as 

Figure 4.3.  

Figure 4.3 Phillips Curve 

 

As the Figure 4.3 shows, there is an asymmetry in the response 

of wage changes to the level of unemployment rate. Wage rise 

faster for a unit change in unemployment rate if the 

unemployment rate is below UN, which is called the natural 

rate of unemployment. Then fall slowly for an equivalent 

change when the unemployment rate is above the natural rate 

UN, indicating the asymptotic floor, or -0.26, for wage change. 

This particular feature of the Philips curve may due to 

institutional factors such as union bargaining power, minimum 

wages, unemployment compensation etc  

Since the publication of Philips‘ article there are different 

versions of Philips curve. A comparatively recent formulation 

is provided by Olivier Blanchard. If we let,  

  Πt = Inflation rate at time t and  
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UNt = Unemployment rate at time ‗t‘ 

Then a modern version of Philips curve can be expressed as; 

 Πt - Π
e
t = β2 (UNt - U

N
) + Ut ..............(2) 

Where; 

Πt =Actual inflation rate at a time t 

Π
e
t =Expected inflation rate at a time ‗t‘, the 

expectations being formed in year t -1  

UNt =Actual unemployment rate providing at a time ‗t‘ 

U
N
 = Natural rate of unemployment  

Ut = Stochastic error term 

Since Π
e
t is not directly observable, as a starting point one can 

make the simplifying assumption that, Π
e
t = Πt-1, that is, the 

inflation rate expected this year is the inflation rate that 

prevailed in the last year. Substituting this assumption in 

equation (2) we have ; 

 Πt - Πt-1 = β2 UNt - β2U
N
 + Ut...................(3) 

Writing the regression model in the standard form, 

  Πt - Πt-1 = β1 + β2U
N
 + Ut...................(4) 

 Where; β1 = β2 UNt 

The equation (4) states that the change in the inflation rate 

between two time periods is linearly related to the current 

unemployment rate. The Phillips‘ relation given in equation (2) 

is known as the ‗modified Philips curve‘ or ‗the expectation 

augmented Philips curve‘ or the ‗accelerationist Philips curve‘. 

4.1.4 Regression through origin 

There are occasions when the two variable PRF assumes the 
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following form; 

 Yi =  β2 Xi + ui ................(1) 

In this model, the intercepted term is absent or zero, hence the 

name regression through the origin.  

For example, in Capital Asset Pricing Model (CAPM) of 

modern portfolio theory, the risk premium may be expressed 

as; 

(ERi – rf ) = βi (ERm – rf) ..............(2) 

Where;  

  ERi = Expected rate of return on security ‗i‘  

ERm = Expected rate of return on the market portfolio 

rf  =  Risk free rate of return  

βi = Beta coefficient, a measure of systematic risk  

If capital markets work efficiently, then capital asset pricing 

model postulates that security i‘s expected risk premium (ERi 

– rf ) is equal to that security's β coefficient times the expected 

market risk premium(ERm – rf).  

For empirical purposes, equation (2) can be expressed as; 

 Ri – rf = βi (Rm-rf) + ui ...............(3) or 

 Ri – rf =αi+ βi (Rm-rf) + ui ...............(4) 

Equation (4) is known as the market model. If capital pricing 

model holds, αi is expected to be zero. This form of regression 

is known as regression through origin. 

4.2 Dummy variable regression model 

In regression analysis the dependent variable is frequently 

influenced not only by variables that can be readily 
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quantifiable but also by variables that are qualitative in nature 

like sex, race, colour, religion, nationality etc. For example, 

holding all other factors constant, female workers are founded 

to be earning less than their male counterparts and non-whites 

are found to earn less than whites. This pattern may result from 

sex or racial discrimination, but whatever the reason 

qualitative variables such as sex and race do influence the 

dependent variable and clearly should be included among the 

explanatory variables.  

Since qualitative variables are usually indicate the presence or 

absence of  a quality or an attribute, such as male or female 

black or white, one method of quantifying such attributes is by 

constructing artificial variables that taken on values 1 or 0, 0 

indicating the absence of an attribute and 1 indicating the 

presence of that attribute. For example, 1 may indicate that a 

person is a male and 0 may designate a female. Or 1 may 

indicate a person is a graduate and 0 that he is not and so on. 

Variables that assume such 0 and 1 values are called dummy 

variables. Alternative names are‘  

-  Indicator variables  

-  Binary variables  

-  Categorical variables 

-  Qualitative variables  

-  Dichotomies variables  

 4.2.1 ANOVA Models 

Dummy variables can be used in regression models just as 

easily as quantitative variables. Here regression model contain 

explanatory variables that are exclusively dummy variables are 

called Analysis of Variance (ANOVA) models. For example, 
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 Yi = α + βDi +ui........................(1) 

 Where; 

  Yi = salary of a worker 

  Di = 1, if male 

       = 0, if female 

In (1), instead of quantitative X variable we have a dummy 

variable D. Model (1) enable us to find out whether sex make 

any difference in the salary of a worker, if all other variables 

such as age, education, years of experience etc. are held 

constant. If ui satisfies all the assumptions of CLRM, We 

obtain from (1),  

  Mean salary of a female worker,  

E(Yi /Di =0) = α ....................(2) 

  Means salary of a male worker,  

 E(Yi /Di =1) = α +β .................(3) 

That is, the intercepted term ‗α‘ gives the mean salary of a 

female worker and the slope coefficient ‗β‘ tells by how much 

the means salary of a male worker differs from the means 

salary of his female counterparts, α +β reflecting the mean 

salary of a male worker.  

A test of the  H0: β= 0, that is, there is no sex discrimination 

can be easily made by running regression on (1) in usual 

manner and finding out whether on the basis of the ‗t‘ test the 

estimated β is statistically significant.  

In most economic research, a regression model contains some 

explanatory variables that are quantitative and some that are 

qualitative. Regression models containing a mixture of 

quantitative and qualitative variables are called Analysis of 

Co-Variance (ANCOVA) models. These models can be 
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analyzed in details as follows.  

4.2.2 ANCOVA Models 

An ANCOVA model is, 

Yi = α1 + α2 Di +βXi + ui........................(4) 

Where; 

 Yi = salary of a worker 

 Xi = Years of experience 

Di = 1, if male 

       = 0, if female 

Model (4) contains one quantitative variable (years of 

experience) and one qualitative variable (sex) that has two 

classes or categories namely male and female. (4) means that, 

Mean salary of a female worker,  

E(Yi /Xi, Di =0) = α + βXi....................(5) 

  Means salary of a male worker,  

 E(Yi/Xi, Di=1) =α1+α2  +βXi..............(6) 

Model (4) postulates that the male and female workers salary 

functions in relation to the years of experience have the same 

slope (β) but a different intercept. In other words, it is assumed 

that the level of male workers‘ salary is different from the 

means salary of female workers by α2but the rate of change in 

the means salary by years of experience is same for both sexes. 

If the assumption of common slope is valid, a test of the 

hypothesis that the two regressions (5) and (6) have the same 

intercept, (that is there is no sex discrimination) can be made 

easily by running the regression on (4) and noting the 

statistical significance of the estimated α2 on the basis of ‗t‘ 

test. If the‗t‘ test shows that α2 is statistically significant, we 

TEERTHANKER MAHAVEER UNIVERSITY



 

  135 

reject the null hypothesis that the male and female workers‘ 

level of means salary are the same. 

4.2.3 Dummy variable trap 

To distinguish the two categories of a dummy variable, we 

have introduced only one dummy variable Di. If, Di=1, always 

denote a male, when Di=0 we know that it is a female since 

there are only two possible outcomes. Hence one dummy 

variable suffices to distinguish two categories. Let us the 

model is as, 

Yi = α1 + α2 D2i + α3 D3i +βXi + ui.............(7) 

Where; 

 Yi = salary of a worker 

 Xi = Years of experience 

D2i = 1, if male 

       = 0, if female 

D3i = 1, if female 

       = 0, if male 

The model (7) cannot be estimated because of perfect 

collinearity between D2 and D3. To see this, suppose we have a 

sample of three male workers and two female workers as 

follows, 

 Y α1 D2 D3 X 

Male Y1 1 1 0 X1 

Male Y2 1 1 0 X2 

Female Y3 1 0 1 X3 

Male Y4 1 1 0 X4 

Female Y5 1 0 1 X5 
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It is clear from the data that, 

 D2 = 1- D3 or D3 = 1- D2 

That is, D2 and D3 are perfectly collinear. In case of perfect 

multi-collinearity, it is clear that the usual OLS estimation is 

not possible. One simple way to avoid this problem is that to 

assign only one dummy variable if there are only two levels or 

classes of the qualitative variable. Thus the general rule is that 

if a qualitative variable has ‗m‘ categories, introduce ‗m-1‘ 

dummy variables. If this rule is not followed, we shall fall into 

what might be called the dummy variable trap. That is the 

situation of perfect multi-collinearity. 

The dummy variable trap is a scenario in which the 

independent variables are multicolinear– a scenario in which 

two or more variables are highly correlated; in simple terms 

one variable can be predicted from the others. In short, a 

dummy variable model with perfect or high multi-collinearity 

is the situation of ‗dummy variable trap‘. 

4.2.4 Dummy variables and seasonal analysis  

One important drawback or feature of economic time series 

based on monthly or quarterly data is that they exhibit seasonal 

patterns (regular oscillatory movement). Most of the variables 

were affected by seasons and it is desirable to remove the 

seasonal component from time series, so that one may 

concentrate on the trend. The process of removing the seasonal 

component from a time series is known as de-seasonalisation 

or seasonal adjustment. The time series thus obtained is called 

de-seasonalised or seasonally adjusted time series. Important 

economic time series such as the consumer price index, the 

wholesale price index, the index of Industrial Production are 

usually published in the seasonally adjusted form. 
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There are several methods of de-seasonalising a time series 

and the method of dummy variables is one of the popular 

methods. For this, we are using the regression equation as 

follows  

Yi = α1 + α2 D2i + α3 D3i + α4 D4i βXi + ui.............(8) 

Where; 

 Yi = Profits 

  Xi = Sales  

D2i = 1, if Second quarter  

       = 0, If otherwise  

D3i = 1, Third quarter  

         = 0, if otherwise  

D4i = 1, First quarter  

         = 0, if otherwise  

ui = Stochastic error term  

For this, firstly we have quarter-wise data and we assign values 

for each quarters using dummy variables. Note that we are 

assuming that, the variable ‗season‘ has four classes, the four 

quarters of a year, thereby requiring the use of three dummy 

variables. Thus, if there is a seasonal pattern present in various 

quarters and if it is statistically significant, the estimated 

differential intercepts α2, α3, and α4, will reflect it. It is possible 

that only some of these differential intercepts are statistically 

significant so that only some quarters may reflect it. The above 

model is general enough to accommodate all these cases. 

In this model it was assumed that only the intercept term 

differs between quarters, the slope coefficient of the sales 
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variable being the same in each quarter. 

4.2.5 Piecewise linear regression 

 We can use dummy variables in another case called piecewise 

linear regression analysis. This case occurs when trend line 

occurs with different slopes. Suppose consider a case of a 

company remunerates its sales representatives. It pays 

commission based on sales in such a manner that up to a 

certain level the target threshold (level X*) there is one 

commission structure and beyond that level another. it can be 

depicted in the Figure 4.4. 

Figure 4.4 Piece-wise regression 

 

More specifically, it is assumed that commission for sales 

increases linearly with an increase in sales until the threshold 

level X*, after which also it increases linearly with sales but at 

a much steeper rate. Thus we have a piece-wise linear 

regression consisting of two linear pieces or segments, which 

are labelled I and II in the Figure 4.4 and the commission 

function changes its slope at the threshold value. Given the 

data on commission, sales and the value of the threshold level 
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X*, the technique of the many variables can be used to 

estimate the differing slopes of the two segments of the piece-

wise linear regression shown in Figure4.4. Thus we proceed 

as, 

 Yi = α1+β1Xi + β2 (Xi – X*) Di + ui ........... (9)  

 Where;  

  Yi =Sales Commission  

  Xi =Volume of sales  

  X* = Threshold value of sales (not known in advance)  

 Di = 1 if Xi >X* 

      = 0 if Xi < X* 

Assuming E(ui) = 0, 

E (Yi / Di = 1, Xi, X*) = α1- β2X* + (β1+β2) Xi which gives the 

mean sales commission beyond the target level X* and E (Yi / 

Di = 0, Xi, X*) = α1+ β1Xi gives the mean sales commission up 

to the target level X*. 

Thus β1 gives the slope of the regression line in segment I and 

(β1+β2) gives the slope of the regression line segment II of the 

piece-wise linear regression shown in Figure 4.4. A test of the 

hypothesis that there is no break in the regression at the 

threshold value X* can be conducted easily by noting the 

statistical significance of the estimator differential slope 

coefficient β2 as in the Figure 4.5. 
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Figure 4.5 Piece-wise regression - Testing 
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Module V 

Model Specification and Diagnostic Testing 

In this module, we are discussing two important topics related 

to regression analysis. These are model specification errors and 

Qualitative Response Regression Models.  

5.1 Specification Errors 

One important assumption of Classical Linear Regression 

Model is that the regression model is correctly specified or 

there is no specification bias in the chosen regression model. 

With this assumption we are estimating the parameters of the 

chosen regression model and testing hypothesis about them 

using R
2
, F, ‗t‘, etc. If the tests are satisfactory, the regression 

model is considered as best fit. If the tests are unsatisfactory, 

there are some specification errors or bias in the chosen model, 

such as; 

- Whether some important variables are omitted from the 

model? 

- Whether some superfluous variables included in the 

model?  

- Is the functional form of the chosen model correct? 

- Is the specification of the stochastic error correct? 

- Is there more than one specification error? 

If these kinds of specification errors are there, the traditional 

econometric methodology used is Average Economic 

Regression (AER). 

If for example, the bias results from omission of variables, the 

researcher starts adding new variables to the model and tries to 
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‗build up‘ the model. This traditional approach to econometric 

modelling is called the ‗bottom-up‘ approach because we start 

our model with a given number of regressors and based on 

diagnostics; go on adding more variables to the model.  This 

approach is also known as ‗Average Economic Regression 

(AER)‘  

Even though so many criticisms have been raised against the 

Average Economic Regression, it is still have a place in the 

standard methodology. Here we are analysing various 

specification bias and how average economic regression 

handles the various kinds of specification errors. Before that, 

we are analysing how average economic regression 

methodology chooses a regression model first. For this, it uses 

the following criteria. 

Parsimony:- A model can never be a completely accurate 

description of reality. To describe the reality, one may have to 

develop such a complex model that will be of little practical 

use. Some amount of abstractions for simplification is 

inevitable in any model building. The principle of parsimony 

states that, a model be kept as simple as possible. This means 

that one should introduce in the model a few key variables that 

capture the essence of the phenomenon under study and retain 

all minor and random influences to the error term ui. 

Identifiability:- For a given set of data, the identifiability 

means that the estimated parameters must have unique values. 

Or what amounts to the same thing, there is only one estimate 

for a given parameter. 

Goodness of fit:- Since the basic thrust of regression 

modelling is to explain as much of the variations in the 

dependent variable as possible by the explanatory variables 
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included in the model. A model is judged good if this 

explanation, as measured by R
2
 is high as possible. 

Theoretical consistency:- A model may not be good, despite a 

high R
2
 if one or more of the estimated coefficients have 

wrong signs. If for example, in the demand function if one 

were to obtain a positive sign for the coefficient of the price 

(positively sloped demand curve) one should look at that result 

with great suspicion. Therefore, theoretical consistency should 

be there when framing the models. 

Predictive power:- The only relevant test of the validity of a 

model is comparison of its prediction with the experience. A 

high R
2
 is used to show the predictive power of the model 

within the given sample. But we want is its predictive power 

outside the sample period  

Now we are going to analyse the specification errors in detail  

5.1.1 Types of specification errors  

Assume that based on the theory and empirical literature, we 

accept a good model and let the model is, 

 Yi = β1 + β2Xi + β3X i 
2 
+ β4Xi

3
 + u1i .............(1) 

  Where  

 Y = total cost of production  

   X = output  

But suppose that for some reason a researcher decided to use 

the following model; 

  Yi = α 1 + α 2Xi + α 3X i 
2 
+ u2i ................(2) 

Since (1) is assumed true, adopting (2) would constitute a 

specification error, the error consisting in ‗omitting a irrelevant 

variable‘ Xi
3
. Therefore, the error term u2i in (2) is in fact, 

TEERTHANKER MAHAVEER UNIVERSITY



 

  144 

u2i = u1i + β4Xi
3
 ..........................(3) 

Now suppose another researcher uses the model , 

Yi = λ1 + λ 2Xi + λ 3X i 
2 

+ λ4 Xi
3

 + λ5Xi
4
 +u3i .............(4) 

If (1) is the correct, model (4) also constitutes a specification 

error, the error here consisting in ‗including an unnecessary or 

irrelevant variable‘ Xi
4
. The new error term is in fact  

 U3i = u1i - λ5Xi
4
 ..........................(5) 

       = u1i  since, λ5Xi
4 
=0. 

Now assume that the model used is, 

  lnYi = γ1 + γ 2Xi + γ 3X i 
2 
+  γ3Xi

3
 +u4i .............(6) 

In relation to the true model (1), the model (6) would also 

constitute a specification bias, the bias here being the use of 

the wrong functional form. In (1) Y appears linearly were as in 

(6) it appears log linearly. 

Finally consider another model, 

Y
*
i = β

*
1 + β

*
2X

*
i + β

*
3X

*
i
2 

+ β
*
4X

*
i
3
 + u

*
1i ......(7) 

Where;  

Y
*
i = Yi+ ϵi  and 

X
*
i = Xi+ wi  and 

ϵi  and wi = errors of measurement 

(7) states that instead of using the true Yi and Xi we use their 

proxies Y
*
i  and X

*
i which may contain ‗errors of measurement 

bias‘. To sum up, having once specified a model as the correct 

model one is likely to commit one or more of these 

specification errors: 

1. Omission of a relevant variable  
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2.  Inclusion of an unnecessary variable  

3. Adopting the wrong functional form  

4. Errors of measurement  

Finally there is one more specification error which is most 

important it is  

- Model misspecification error  

This error occurs because we do not know what is the true 

model in the first place. 

5.1.2 Consequences of specification errors  

Whatever be the source of specification error, its consequences 

are very important. Here we are explaining two kinds of 

specification errors in the case of three variable regression 

models and this can be generalized to k-variable case. 

- Omitting a relevant variable (under-fitting a model) and  

- Inclusion of an irrelevant variable (over-fitting a model) 

Omitting a relevant variable (under-fitting a model)  

Suppose that the true model is, 

 Yi = β1+ β2X2i + β3X3i + ui.................(1) 

But for some reasons, we fit the following model; 

  Yi = α 1+ α 2X2i + vi...........................(2) 

The consequences of omitting X3 are as follows:  

1. If the left out variable X3 is correlated with the 

included variable X2, r23 ≠ 0, and are biased as well as 

inconsistent. That is, E ( ) ≠ β1 and E ( ) ≠ β2 . This bias 

does not disappear even in large samples.  
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2. Even if X2 and X3 are uncorrelated, that is, r23 = 0, 

 is still biased, although  is unbiased  

3. The var (ûi) = σ
2
 is incorrectly estimated  

4. Var( ) = σ
2 

/ ƩXi
2
 is a biased estimator of the 

variance of . 

5. The usual confidence interval and hypothesis testing 

procedures are likely to give misleading conclusions about the 

statistical significance of the estimated parameters  

Inclusion of an irrelevant variable (over-fitting a model)  

Latest assume the true model is, 

Yi = β1+ β2X2i + ui.................(1) 

After committing the specification due to the inclusion of an 

unnecessary variable the model is, 

Yi = α1+ α2X2i + α3X3i + vi.................(2) 

The consequences of this specification error are as follows; 

1. The OLS estimators of the parameters of the incorrect 

model are all unbiased and consistent. That is,  

E ( ) = β1 , E ( ) = β2  and E( ) = β3 

2. The error variance σ
2 

is correctly estimated  

3. The usual confidence interval and hypothesis testing 

procedures remain valid 

4. The estimated α‘s will be generally inefficient that is 

their variances will be generally larger than those of the 

of the true model. 
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5.1.3 Tests of specification errors  

Once we can found that there are specification errors, there are 

remedies for that. Therefore, it is essential to detect whether 

there is any specification errors in the fitted regression model. 

Here we are discussing the detection measures of specification 

errors. 

Detecting the presence of unnecessary variables 

Suppose we develop a k variable model to explain a 

phenomenon: 

Yi = β1+ β2X2i + β3X3i +.....+ βkXki + ui.................( 1) 

Suppose we are not sure that Xk is really belongs there, the 

simple way to find this is to test the significance of the 

estimated βk with the usual‗t‘ test t = . But suppose 

that we are not sure whether X3 and X4 legitimately belong in 

the model. In this case, we would like to test whether β3=β4=0. 

This can be easily accomplished by the F test. Thus dictating 

the presence of an irrelevant variable is not a difficult task. 

Tests for Omitted variables and incorrect functional form 

To determine whether there is any specification bias due to 

omitted variables or wrong functional form the commonly 

used test are;  

1. Examination of residuals  

Like autocorrelation and heterosarasticity, the specification 

errors due to omission of a relevant variable and wrong 

functional form can also be detected by examining the 

residuals. Here also the residuals, if we plot, exhibit distinct 

patterns 

Suppose we have a total cost function: 
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 Yi = β1 + β2Xi + β3X i 
2 
+ β4Xi

3
 + u1i .............(1) 

  Where  

Y = total cost of production  

   X = output  

But if the researcher fits the model, 

  Yi = α 1 + α 2Xi + α 3X i 
2 
+ u2i ................(2) 

And another researcher fits the model, 

  Yi = λ1 + λ 2Xi + u3i .............(3) 

The (2) and (3) have specification errors. If we plot the 

residuals we may have as Figure 5.1. 

Figure 5.1 Examination of Residuals 

 

In the Figure 5.1 as we move from left it to right (‗a‘ to ‗b‘ to 

‗c‘) the residuals are not only true but also they do not exhibit 

the pronounced cyclical swings associated with the mis-fitted 

models. Therefore, if there are specification errors, the 

residuals will exhibit noticeable patterns. 

TEERTHANKER MAHAVEER UNIVERSITY



 

  149 

2. The Durbin Watson ‘d’  statistic  

We are proceeding the following steps for dictating 

specification errors using Durbin- Watson tes.   

- From the assumed model, obtain OLS residuals. 

-  It is assumed that this model is miss specified because it 

excludes at relevant explanatory variable say Z. Therefore, 

order the obtained residuals from step 1 according to the 

increasing values of Z. 

- Compute the ‗d‘ statistic from the residuals thus ordered by 

the usual ‗d‘ formula , 

 

- Base on Durbin - Watson table, if the estimated‗d‘ value is 

significant, and then one can accept the hypothesis of 

model misspecification. Otherwise reject the hypothesis. 

3. Ramsey’s RESET test  

Ramsey has proposed a general test of specification error 

called RESET (Regression Specification Error Test). Let us 

assume that the SLRM, 

 Yi = λ1 + λ 2Xi + u3i .............(1) 

To detect the specification error in the model, the steps 

involved in RESET are , 

- From the chosen model obtain Ŷi and ûi. 

- Plot the ûi in the graph paper to observe whether they 

exhibit any noticeable pattern  

- If the ûi are distributed to exhibit some pattern, re-run the 

regression in introducing Ŷi in some form as an additional 

regressor such as Ŷi 
2
 or Ŷi 

3
 etc. Thus we run‘ 
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 Yi = β1 + β2Xi + β3 Ŷi 
2
+ β4 Ŷi 

3
  + ui .............(2) 

- Obtain R
2
 from (1) and (2) as R

2
old and R

2
new. Then using 

the F test the statistical significance of increase in R
2 

using,  

   

   
            

 

                          

          

                                         

  

     - If the computed F value is significant at a 5% level one 

can accept the hypothesis that the model (1) is mis-specified. 

5.2. Qualitative response regression models 

In all the regression models that we have considered so far, we 

have implicitly assumed that the regressand, (the dependent 

variable, or the response variable) Y is quantitative, whereas 

the explanatory variables are either quantitative, qualitative (or 

dummy), or a mixture of both. In fact, in the previous module 

on dummy variables, we saw how the dummy regressors are 

introduced in a regression model and what role they play in 

specific situations. Here, we consider several models in which 

the regressand itself is qualitative in nature. Although 

increasingly used in various areas of social sciences and 

medical research, qualitative response regression models pose 

interesting estimation and interpretation challenges. In this 

section we are discussing some of the major themes in this 

area. 

5.2.1 Linear probability model 

To fix ideas, consider the following regression model: 

  Yi = β1+ β2Xi +ui ...............(1) 

Where, 

 X = family income and  
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Y =1 if the family owns a house and 0 if it does not own a 

house.  

The above model looks like a typical linear regression model 

but because the regressant is binary, or dichotomous, it is 

called a Linear Probability Model (LPM). This is because the 

conditional expectation of Yi given Xi, E(Yi/Xi), can be 

interpreted as the conditional probability that the event will 

occur given Xi that is, Pr (Yi = 1/Xi) Thus, in our example, 

E(Yi/Xi) Gives the probability of a family owning a house and 

whose income is the given amount Xi.  

The justification of the name LPM for model like (1) can be 

seen as follows: Assuming E(ui) = 0 usual (to obtain unbiased 

estimators) we obtain.  

E(Yi/Xi) = β1+ β2Xi ........(2) 

Now, if Pi = probability that Yi =1 (that is, the event occurs), 

and (1-Pi) = probability that Yi = 0 (that is, that the event does 

not occur), the variable Yi has the following (probability) 

distribution. 

Yi Probability 

0 1-Pi 

1 Pi 

Total 1 

That is Yi follows the Beronoulli probability distribution.  

Now, by the definition of mathematical expectation, we obtain.  

E(Yi) = 0(1-Pi) + 1 (Pi) = Pi -----------------(3)  

Comparing (2) with (3.), we can equate, 

E(Yi/Xi) = β1+ β2Xi = Pi .............(4) 
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That is, the conditional expectation of the model can, in fact, 

be interpreted as the conditional probability of Yi in general; 

the expectation of a Bernoulli random variable is the 

probability that the random variable equals 1. In passing note 

that if there are n independent trials, each with a probability p 

of success and probability (1-p) of failure, and X of these trials 

represent the number of successes then X is said to follow the 

binomial distribution. The mean of the binomial distribution is 

‗np‘ and its variance is ‗m(1-p)‘. The term success is defined 

in the context of the problem.  

Since the probability Pi must lie between 0 and 1, we have the 

restriction. 

0≤ E (Yi/Xi) ≤ 1-------------------5  

That is, the conditional expectation (or conditional probability) 

must lie between 0 and 1.  

From the preceding discussion it would seem that OLS can be 

easily extended to binary dependent variable regression 

models. So, perhaps there is nothing new here. Unfortunately, 

this is not the case, for the LPM poses several problems, which 

are as follows: 

Non-Normality of the Disturbances ui. 

Although OLS does not require the disturbances (ui) to be 

normally distributed, we assumed them to be so distributed for 

the purpose of statistical inference. But the assumption of 

normality for ui is not tenable for the LPMs because, like Yi, 

the disturbances ui also take only two values; that is, they also 

follow the Bernoulli distribution. This can be seen clearly if we 

write equation (1) as, 

ui = Yi – β1- β2Xi.............(6) 
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The probability distribution of ui is, 

 Ui Probability 

When Yi=1 1- β1- β2 Xi Pi 

When Yi=0 - β1- β2Xi 1-Pi  

 . .................(7) 

Obviously, ui cannot be assumed to be normally distributed; 

they follow the Bernoulli distribution. But the non-fulfilment 

of the normality assumption may not be as critical as it appears 

because we know that the OLS point estimates still remain 

unbiased (recall that, if the objective is point estimation, the 

normality assumption is not necessary). Besides, as the sample 

size increases indefinitely, statistical theory shows that the 

OLS estimators tend to be normally distributed generally. As a 

result, in large samples the statistical inference of the LPM will 

follow the usual OLS procedure under the normality 

assumption. 

Heteroscedastic Variances of the Disturbances:  

Even if E(ui) = 0 and cov (ui , uj ) = 0 for i _= j (i.e., no serial 

correlation), it can no longer be maintained that in the LPM the 

disturbances are homoscedastic. This is, however, not 

surprising. As statistical theory shows, for a Bernoulli 

distribution the theoretical mean and variance are, respectively, 

p and p(1 − p), where p is the probability of success (i.e., 

something happening), showing that the variance is a function 

of the mean. Hence the error variance is heteroscedastic.  

For the distribution of the error term given in (7), applying the 

definition of variance, the reader should verify that, 

var (ui) = Pi(1 − Pi)-------- (8) 
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That is, the variance of the error term in the LPM is 

heteroscedastic. Since Pi = E(Yi | Xi) = β1 + β2Xi , the variance 

of ui ultimately depends on the values of X and hence is not 

homoscedastic.  

We already know that, in the presence of heteroscedasticity, 

the OLS estimators, although unbiased, are not efficient; that 

is, they do not have minimum variance. But the problem of 

heteroscedasticity, like the problem of non-normality, is not 

insurmountable. Since the variance of ui depends on E(Yi|Xi), 

one way to resolve the heteroscedasticity problem is to 

transform the model (1) by dividing it through by, 

√E(Yi/Xi) [1 − E(Yi/Xi)] = √Pi (1 − Pi) = say √wi  

That is,  

Yi / √ wi = √β1 / wi+ β2Xi / √wi+ ui / √wi -------- (9) 

As you can readily verify, the transformed error term in (9) is 

homoscedastic. Therefore, after estimating (1), we can now 

estimate (9) by OLS, which is nothing but the Weighted Least 

Squares (WLS) with wi serving as the weights.In theory, what 

we have just described is fine. But in practice the true E(Yi | Xi) 

is unknown; hence the weights wi are unknown. To estimate 

wi, we can use the following two-step procedure: 

Step 1. Run the OLS regression (1) despite the 

heteroscedasticity problem and obtain Ŷi = estimate of the true 

E(Yi | Xi). Then obtain  

ŵi  = Ŷi (1− Ŷi), the estimate of wi.  

Step 2. Use the estimated wi to transform the data as shown in 

(9) and estimate the transformed equation by OLS (i.e., 

weighted least squares). 
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Non-fulfillment of 0 ≤ E(Yi | X) ≤ 1  

Since E(Yi | X) in the linear probability models measures the 

conditional probability of the event Y occurring given X, it 

must necessarily lies in between 0 and 1. Although this is true 

a priori, there is no guarantee that Ŷi , the estimators of E(Yi | 

Xi ), will necessarily fulfil this restriction, and this is the real 

problem with the OLS estimation of the LPM. There are two 

ways of finding out whether the estimated Ŷi lie between 0 and 

1. One is to estimate the LPM by the usual OLS method and 

find out whether the estimated Ŷi lie between 0 and 1. If some 

are less than 0 (that is, negative), Ŷi is assumed to be zero for 

those cases; if they are greater than 1, they are assumed to be 

1. 

The second procedure is to devise an estimating technique that 

will guarantee that the estimated conditional probabilities Ŷi 

will lie between 0 and 1. The logit and probit models discussed 

later will guarantee that the estimated probabilities will indeed 

lie between the logical limits 0 and 1. 

5.2.2 Logit and Probit Models 

As we have seen, the LPM is plagued by several problems, 

such as (1) non-normality of ui, (2) heteroscedasticity of ui, (3) 

possibility of Ŷi lying outside the 0–1 range, and (4) the 

generally lower R2 values. But these problems are 

surmountable. For example, we can use WLS to resolve the 

heteroscedasticity problem or increase the sample size to 

minimize the non-normality problem. By resorting to restricted 

least-squares or mathematical programming techniques we can 

even make the estimated probabilities lie in the 0–1 interval. 

But even then the fundamental problem with the LPM is that it 

is not logically a very attractive model because it assumes that, 
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Pi = E(Y = 1/X) increases linearly with X, that is, the marginal 

or incremental effect of X remains constant throughout. This 

seems patently unrealistic. In reality one would expect that Pi 

is nonlinearly related to Xi : 

At very low income a family will not own a house but at a 

sufficiently high level of income, say, X*, it most likely will 

own a house. Any increase in income beyond X* will have 

little effect on the probability of owning a house. Thus, at both 

ends of the income distribution, the probability of owning a 

house will be virtually unaffected by a small increase in X. 

Therefore, what we need is a (probability) model that has these 

two features:  

(1) As Xi increases, Pi = E(Y = 1 | X) increases but never steps 

outside the 0–1 interval, and  

(2) the relationship between Pi and Xi is nonlinear, that is, 

―one which approaches zero at slower and slower rates as Xi 

gets small and approaches one at slower and slower rates as Xi 

gets very large.‘‘  

The reader will realize that the sigmoid, or S-shaped, curve 

very much resembles the cumulative distribution function 

(CDF) of a random variable. Therefore, one can easily use the 

CDF to model regressions where the response variable is 

dichotomous, taking 0–1 values. The practical question now is, 

which CDF? For although all CDFs are S shaped, for each 

random variable there is a unique CDF. For historical as well 

as practical reasons, the CDFs commonly chosen to represent 

the 0–1 response models are  

(1) The logistic and  

(2) The normal,  
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The former giving rise to the logit model and the latter to the 

probit (or normit) model. 

THE LOGIT MODEL:  

Pi = E(Y = 1/Xi) = β1 + β2Xi --------------------1  

Where X is income and Y = 1 means the family owns a house. 

But now consider the following representation of home 

ownership: 

 

For ease of exposition, we write (2) as 

 

Where Zi = β1 + β2Xi  

Equation (3) represent what is known as the cumulative 

logistic distribution function.  

It is easy to verify that as Zi ranges from - ∞ to + ∞, Pi Ranges 

between 0 and 1 and that Pi is nonlinearly related to Zi (i.e.Xi ). 

Thus satisfying the two requirements considered earlier. But it 

seems that in satisfying these requirements, we have created an 

estimation problem because Pi is nonlinear not only in X but 

also in the β's as can be seen clearly from (2). This means that 

we cannot use the familiar OLS procedure to estimate the 

parameters. But this problem is more apparent than real 

because (2) can be linearised, which can be shown as follows.  

If Pi the probability for owning a house, is given by (3) then 

(1-Pi), the probability of not owning a house, is 
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Therefore, we can write, 

 

Now Pi / (1 - Pi) is simply the odds ratio in favour of owning a 

house, the ratio of the probability that a family will own a 

house to the probability that it will not own a house. Thus if Pi 

= 0.8, it means that odds are 4 to 1 in favour of the family 

owning a house.  

Now if we take the natural log of (5) we obtain a very 

interesting result, namely,  

 ........................(6) 

 = β1 + β2Xi  

That is, L, the log of the odds ratio, is not only linear in X, but 

also (from the estimation viewpoint) linear in the parameters. 

L is called the logit, and hence the name logit model for 

models like (6) Notice these features of the logit model.  

1. As P goes from 0 to 1 (i.e. as Z varies from - ∞ to + 

∞), the logit L goes from - ∞ to + ∞. That is, although the 

probabilities (of necessity) lie between 0 and 1, the logits are 

not so bounded.  

2. Although l is linear in X, the probabilities 

themselves are not. This property is in contrast with the LPM 

model (1) where the probabilities increase linearly with X.  

3. Although we have included only a single X variable, 

or regressor, in the preceding model, one can add as many 

regressors as may be dictated by the underlying theory.  

4. If L, the logit, is positive, it means that when the 

value of the regressor(s) increases, the odds that the regressant 
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equals 1 (meaning some event of interest happens) increases. If 

L is negative, the odds that the regressant equal 1 decreases as 

the value of X increases. To put it differently, the logit 

becomes negative and increasingly large in magnitude as the 

odds ratio decreases from 1 to 0 and becomes increasingly 

large and positive as the odds ratio increases from 1 to infinity.  

5. More formally, the interpretation of the logit model 

given in (6) is as follows: β2, the slope, measures the change in 

L for unit change in X, that is, it tells how the log – odds in 

favor of owning a house change an income changes by a unit, 

say $ 1000. The intercept β1 is the value of the log odds in 

favour of owning a house if income is zero. Like most 

interpretations of intercepts, this interpretation may not have 

any physical meaning.  

6. Given a certain level of income, say, X, if we 

actually want to estimate not the odds in favor of owning a 

house but the probability of owning a house itself, this can be 

done directly from (3) once the estimate of β1 + β2 are 

available. This, however, raises the most important question. 

How do we estimate β1 and β2 in the first place? The answer is 

given in the next section.  

7. Whereas the LPM assumes that Pi is linearly related 

to Xi the logit model assumes that the log of the odds ratio is 

linearly related to Xi.  

THE PROBIT MODEL  

The estimating model that emerges from the normal CDF is 

popularly normit model. To motivate the probit model, assume 

that in our home ownership example the decision of the i
th

 

Family to own a house or not depends on an unobservable 

utility index Ii (also known as a latent variable), that is 
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determined by one or more explanatory variables, say income 

Xi in such a way that the larger the value of the index Ii The 

greater the probability of a family owning a house. We express 

the index Ii as.  

Ii = β1 + β2Xi --------------------------1  

Where; Xi is the income of the i
th

 Family.  

How is the (unobservable) index related to the actual decision 

to own a house? As before let Y = 1if the family owns a house 

and Y = 0 if it does not. Now it is reasonable to assume that 

there is a critical or threshold level of the index, call it 𝐼* , such 

that if Ii exceeds 𝐼* , the family will own a house, otherwise it 

will not. The threshold 𝐼*  like Ii is not observable, but if we 

assume that it is normally distributed with the same mean and 

variance, it is possible not only to estimate the parameters of 

the index given in (1). But also to get some information about 

the unobservable index itself. This calculation is also follows.  

Given the assumption of normality, the probability that 𝐼*  is 

less than or equal to Ii can be computed from the standardized 

normal CDF as. 

 

Where P(Y = 1/X) means the probability that an event occurs 

given the value(s) of the X, or explanatory, variable(s) and 

where Zi is the standard normal variable, i.e. . 

F is the standard normal CDF, which written explicitly in the 

present context is: 

......(3) 
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Since P represents the probability that an event will occur, here 

the probability of owning a house, it is measured by the area of 

the standard normal curve from -∞ as shown in Figure 5.2. 

Figure 5.2 Probit model 

 

Now to obtain information, in Ii the utility index, as well asβ1 

𝑎𝑛𝑑 β2, we take the inverse of (2) to obtain. 

 .........(4) 

Where F
-1

 is the inverse of the normal CDF. What all this 

means can be made clear from Figure in panel a of this figure 

we obtain from the ordinate the (cumulative) probability of 

owning a house given 𝐼*  ≤ 𝐼  whereas in panel b we obtain 

from the abscissa the value of Ii Given the value of Pi which is 

simply the reverse of the former. 

In the logit model the dependent variable is the log of the odds 
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ratio, which is a linear function of the regressors. The 

probability function that underlies the logit model is the 

logistic distribution. If the data are available in grouped form, 

we can use OLS to estimate the parameters of the logit model, 

provided we take into account explicitly the heteroscedastic 

nature of the error term. If the data are available at the 

individual, or micro, level, nonlinear-in-the-parameter 

estimating procedures are called for. If we choose the normal 

distribution as the appropriate probability distribution, then we 

can use the probit model. This model is mathematically a bit 

difficult as it involves integrals. But for all practical purposes, 

both logit and probit models give similar results. In practice, 

the choice therefore depends on the ease of computation, 

which is not a serious problem with sophisticated statistical 

packages that are now readily available. 
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