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Statistical Methods in Economics 

Block- I 

Unit I  : Random variables‟ mean and variance of a random 
variable, basic laws of probability. Discreet random variables 
(Geometric, Binomial and Poisson), Continuous distribution (The 
Normal  Distribution),   

Unit-II Covariance  and  Correlation (Pearson‟s and Spearman‟s 
coefficients), the Law of Large numbers (without proof) 

Block- II 

Unit III : Tests of Hypothesis : Test of hypothesis, null and 
alternative hypothesis, one tailed and two tailed tests.  

Unit- IV The standard normal distribution and its applications, the 
Chi-square distribution and its applications, the t distribution and its 
application, the f distribution and its application, the Central Limit 
Theorem (without proof) 

Block III 

Unit V : Simple Linear regression : Estimation and hypothesis 
testing, properties of estimators,  

Unit-VI R square and adjusted R square, the F test regression, 
interpreting regression coefficients. \ 

Block - IV 

Unit VII : Problems in simple Linear Regression model : 
Heteroskedasticity and its consequences, autocorrelation and its 
consequences, multicollinearity and its consequences. 

Unit-VIII : Problems in simple Linear Regression model  
Auto correlation and its consequences, multi-collinearity 
and its consequences 
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1) Hatekar Neeraj R : Principles of Econometrics : an Introduction 
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2) Kennedy P : A Guide Econometrics, Sixth Edition, Wiley 
Blackwell Edition, 2008. 

 
 
 
 



 
  

UNIT-I  

THE CONCEPT OF A RANDOM VARIABLE 

Unit Structure: 

 
1.0 Objectives 

1.1 Introduction 

1.2 Types of Random Variables 

1.3 Mean of a random variable 

1.4 Variance of a random variable 

1.5 Basic Laws of probability 

1.6 Types of Discrete random variables 

1.7 Continuous distribution 

1.8 Reference 
 

1.0 OBJECTIVES 
 

After going to this module you will be able : 

• To understand concept of random variable 

• To understand various types of random variable 

• To understand the meaning of covariance and correlation 
 

1.1 INTRODUCTION 
 

A random variable is a variable whose value is not known or 
a function that assigns values to each of an experiment‟s outcome. 
Random variables are oflenly used in econometric or regression 
analysis to determine statistical relationships between two or more 
variables. 

Random variables are associated with random processes 
where a random process is an event or experiment that has a 
random outcome. For e.g. rolling a die, tossing a coin, choosing a 
card or any one of the other possibilities. It is something which we 
would guess but cannot predict the exact outcomes. So we have to 
calculate the probability of a particular outcome. 

Random variables are denoted by capital letters for e.g. „X‟, 
„Y‟ where it usually refers to the probability of getting a certain 
outcome. Random variables give numbers to outcomes of random 
events. It means though an event is random but its outcome is 



 
  

quantifiable. For e.g. rolling a die. Let‟s say we wanted to know how 
many sixes we will get if we roll a die for a certain number of times. 
In this case random variable X could be equal to 1 if we get a six & 
O if we get any other number. 

Let us discuss another example of a random variable i.e. the 
outcome of a coin toss. Let us assume that the probability 
distribution in which the outcomes of a random event are not 
equally likely to happen. If random variable, Y, is the number of 
heads we get from tossing two coins, then Y could be 0, 1 or 2. 
This means that we could have no heads, one head or both heads 
on a two - coin toss. However, the two coins land in four different 

ways. TT, HT, TH and HH. Therefore, the P (Y = 0) = 
1 

. 
4 

Since we have one chance of getting no heads (i.e. two fails 
(TT) when the coins are tossed. Similarly, the probability of getting 
two heads (HH) is also 1/4 . So getting one head has a likelihood of 

occurring two times : HT and TH. In this case, P (Y = 1) = 2 / 4 = 1 / 2 . 

 

1.2 TYPES OF RANDOM VARIABLES 
 

There are two types of random variables : 
A) Discrete random variables 
B) Continuous random variables 

 
Discrete random variables take into account a countable 

number of distinct values. For e.g. an experiment of a coin tossed 
for three times. If X represents the number of times that the 
outcome will come up heads, then X is a discrete random variable 
that can only have values 0, 1, 2, 3 (from no heads in thee 
successive coin tosses to all heads). No other value is possible for 
X. 

Continuous random variables can represent any value within 
a specified range or interval and can take on an infinite number of 
possible values. E.g. an experiment that involves measuring the 
amount of rainfall in a city over a year or overage height or weight 
of a random group of 100 people. 

 

1.3 MEAN OF A RANDOM VARIABLE 
 

The mean of a discrete random variable X is a weighted 
average of the possible values that the random variable can take. 
The mean of a random variable weights each outcome xi 

according to its probability, pi . Therefore expected value of X is μ 

and formula is 



 
  

X 

μ = x1p1 + x2 p2 + .................+ xk pk 

= ∑ xi pi 

The mean of a random variable provides the long-run 
average of the variable, or the expected average outcome over 
many observations. 

For a continuous random variable, the mean is defined by 
the density curve of the distribution. For a symmetric density curve, 
such as normal distribution, the mean lies at the center of the 
curve. 

 

1.4 VARIANCE OF A RANDOM VARIABLE 
 

The variance of a discrete random variable X measures the 
spread, or variability of the distribution and is defined by 

 

σ 2 = ∑( xi − μx )
2 

pi 

The standard deviation σ is the square root of the variance. 
 

1.5 BASIC LAWS OF PROBABILITY 
 

Probability is defined as a number between 0 and 1 
representing the likelihood of an event happening. A probability of 0 
indicates no chance of that event occurring, whereas a probability 
of 1 means the event will occur. 

Basic Properties of Probability Rules: 

❖ Every probability is between 1 and 1. In other words, if AA is an 

event, then 0 ≤ P ( A) ≤ 10 ≤ P ( A) ≤ 1. 

❖ The sum of the probabilities of all the outcomes is one. For e.g. 
if all the outcomes in the sample space are denoted by Ai Ai 

then ∑ Ai = ∑ Ai = 1 . 

❖ Impossible events have probability  zero. If event AA is 

impossible, then P ( A) = OP ( A) = 0 . 

❖ Certain events have probability 1. If event AA is certain to occur, 

then P ( A) = IP ( A) = 1 . 

 
The Probability Rules: 
1) Rule 1 : Whenever an event is the union of two other events, 
the Addition Rule will apply. If AA & BB are two events, then 

 
      



 
  

     

P ( B given A) = P ( A and B) P ( A) P (B given A) = P ( A and B) P ( A) 

P ( A and B) = P ( A) P (B given A) P ( A and B) = P ( A) P (B given A) 

If can be written as : 

P ( A U B ) = P ( A) + P (B ) − P ( A I  B) P ( A U B) = P ( A) + P (B) − P ( A I B) 

 

2) Rule 2 : Whenever an event is complement of another event, 
the complementary rule will apply. If AA is an event then we have 
the following rule. 

 

This is also written as 

P (A
− ) = 1 − P ( A) P (A

− ) = 1 − P ( A) 

3) Rule 3 : Whenever partial knowledge of an event is available, 
then the condition rule will be applied. If event AA is already known 
to have occurred and probability of event BB is desired, then we will 
have the following rule. 

 

Where it is further written as : 

P ( B  A) = P ( A I B) P ( A) P (B A) = P ( A I B) P ( A) 

4) Rule 4 : Whenever an event is the intersection of two other 
events, the Multiplication rule will apply. If events AA and BB need 
to occur simultaneously then, we have the following rule. 

 

It is also written as : 

P ( A I B) = P ( A) P (B  A) P ( A I B) = P ( A) P (B  A) 
 

Let us discuss these rules with the help of an example of 
rolling a dice. Suppose we roll two dice. 

1) The probability that both dice are 5 is: 
P (both are 5) = P(first is a 5 and second is a 5) P(both are 5) = 
P (first is a 5 and second is a 5) 12 

= P(first is a 5) P(second is a 5, given first is a 5) = 1.6.16 = 136 = 
P(first is a 5) P(second is a 5, given first is a 5) = 16.16 = 136 

 
Here the word „both‟ indicates two events had to happen at 

the same time, i.e. the first event and the second event. We used 



 
  

the multiplication rule because of the key word „and‟. The first factor 
resulted from the Basic Rule on a single die. 

 
2) The probability that at least one die is a 5 is : 
P(at least one is a 5) = P(first is a 5 or second is a 5) P(at least one 
is a 5) = P(first is a 5 or second is a 5) 12 

= P(first is a 5) + P(second is a 5) - P(first is a 5 and second is a 5) 
= 16 + 16 - 136 = 1136 = P(first is a 5) + P(second is a 5) - P(first is 
a 5 and second is a 5) = 16 + 16 - 136 = 1136 

 
“First we had to recognize that the event at least one” could 

be fulfilled by one or the other of two separate cases. We used 
„Addition rule‟ because of the word „or‟. The first two terms come 
from the Basic Rule on a single die, while the third term resulted 
from only one outcome where both dice will be 5. 

3) The probability that neither die is a 5 is : 
P(neither is a 5) = 1 - P(at least one is a 5) = 1 - 1136 = 2536 
P(neither is a 5) = 1 - P(at least one is a 5) = 1 - 1136 = 2536. 

 
In this case, the word “neither” is complementary to the word “at 
least one” so we used the Complementary rule. 

 
4) Given that at least one of the dice is a 5, the probability that 
the other is a 5 is: 
P(other is a 5 / at least one is a 5) = P(both are 5) P(at least one is 
a 5) = 1361136 = 111P(other is a 5 / at least one is a 5) = P(both 
are 5) P(at least one is a 5) = 1361136 = 111. 

The partial knowledge required the conditional rule. 
 

1.6  TYPES OF DISCRETE RANDOM VARIABLES  

When solving problems. we should be able to recognize a 
random variable which fits one of the formats of Discrete random 
variables. 

1) Bernoulli Random Variable: Is the simple kind of random 
variable. It can take on two values 1 and 0. If an experiment with 
probability P resulted in success then it takes on a 1 and 0 if the 
result is failed. For e.g. If the shooter hits the target, we call it a 
„success‟ and he misses it then we call it a „failure‟. Let us assume 
that whether the shooter hits or misses the particular target on any 
particular attempt has nothing to do with his success or failure on 
any other attempts. In this case we are ruling out the possibility of 
improvement by the shooter with practise. Assuming probability of a 
success is P and that of failure is 1- p, where p is a constant 



 
  

between values 1 and 0. A random variable that take value 1 in 
case of success and 0 in case of failure is called Bernoulli random 
variable. 

 
The Bernoulli distribution with parameter P if its probability 

mass function (pmf) is P ( x) = Px 
X (1 − p)1− x 

, x = 0,1 

Where, x = 0, P ( x) = 1 − p and 

if x = 1, P ( x) = p . 

 
Conditions for Bernoulli trials 
1) A finite number of trials. 
2) Each trial should have exactly two outcomes success or failure. 
3) Trials should be independent. 
4) The probability of success or failure should be the same in each 
trial. 

For e.g. - Tossing a coin. Suppose, for a Bernoulli random 

variable, p = 0.4 . Then 

p (0) = 0.6, p (1) = 0.4 . 

Suppose the coin is tossed for four times. The event that the 
outcome will be Head on the first trial, and Tail on the next two and 
again Head on the last can be represented as : 

S = (1, 0, 0,1) 
The probability with which the outcome is Head is P, 

whereas the probability with which Tail will occur is 1 - p. The event 
„H‟ or „T‟ on each trial are independent events, in the sense that 
whether the outcomes is H or T on any trial is independent of the 
chance of „Head‟ or „Tail‟ on any previous or subsequent trials. If A 
and B are independent events, the probability of observing A and B 
equals the probability of A multiplied by the probability of B. 
Therefore, the probability of observing 1,0,0,1 together is : 

p × (1 −) × (1 − p) × p = p2 × (1 − p) 

2) The Binomial Random Variable: 
A binomial distribution can be thought of as simply the 

probability of a success or failure outcome in an experiment or 
survey that is repeated multiple times. It has only two possible 
outcome (the prefix “bi” means two) for e.g. a coin toss has only 
two outcomes heads or fails or taking a test could have two 
outcomes pass or fail. 



 
  

A binomial random variable is the number of successes X in 
n repeated trials of a binomial experiment. The probability 
distribution of a binomial random variable is called a binomial 
distribution. 

For a variable to be classified as a binomial random variable, 
the following conditions must be satisfied: 

1) There must be a fixed sample size (a certain number of trials) 
2) For each trial, the success must either happen or it must not. 
3) The probability for each event must be exactly the same. 
4) Each trial must be an independent event. 

 
The binomial probability refers to the probability that a 

binomial experiment results in exactly X successes. Given 

X , n & p , we can compute the binomial probability based on the 

binomial formula : 

Suppose a binomial consists of n trials & results in X 
successes and if the probability of success on an individual trial is 
P, then the binomial probability is : 

b ( X ′, n , p) = n Cr XP
x 

X (1 − p )n− x
 

OR 

b ( X ′, n , p) = {n !/ ⎣⎡ X !(n − x)!⎦⎤}× Px 
X (1 − p)n−x

 

Where 

X → The number of successes that result from the binomial 

experiment. 
n → The number of trials 

p → The probability of success on an individual trial 

Q → The probability of failure on an individual trial C = (1 − p) 
n! → The factoral of n. 

b ( X ′, n , p) → binomial probability 

n Cr → the number of combinations of n things, taken r at a time. 

 
For e.g. Suppose a die is tossed or 5 times. What is the 

probability of getting exactly 2 fours? 
Solution : 

This is a binomial experiment in which the number of trials is 
equal to 5, the number of successes is equal to 2 and the 
probability of success on a single trial is 1/6 or about 0.167. 
Therefore, the binomial probability is : 



 
  

  

 

 

 

b (2;5, 0.167) = 5C2 × (0.167)2 × (0.833)3 

b (2;5, 0.167) = 0.161 

 

3) The Poisson Distribution : 
A poisson distribution is the discrete probability distribution 

that results from a Poisson experiment. It has the following 
properties. 

→ The experiment results in outcomes as successes or failures. 

→ The average number of successes (μ ) that occurs in a 

specified known region. 

→ The probability that a success will occur is proportional to the 

size of the region. 
→ The probability that the success will occur in an extremely small 

region is virtually zero. 
 

For e.g. A certain restaurant gets an average of 4 customers 
per minute for takeaway orders. In this case, a poisson distribution 
can be used to analyze the probability of various events, regarding 
total number of customers visiting for takeaway orders. It helps a 
manager of the restaurant to plan for such events with staffing & 
scheduling. 

Likewise the poisson distribution can also be applied in 
subjects like biology, disaster management, finance where the 
events are time dependent. 

 
A Poisson random variable is the number of success that 

result from a Poisson experiment. The probability distribution of a 
Poisson random variable is called a Poisson distribution. 

 
Suppose the average number of successes within a given 

region is μ , then the Poisson probability is : 
 

Where e : a constant equal to approximately 2.71828 (e is the 
base of the natural logarithm system) 

μ : the mean number of successes that occur in a specified 

region. 
X : the actual number of successes that occur in a 

specified region. 

P ( X ′, μ ) : The Poisson probability 
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For e.g. 
The average number of high end cars are sold by the dealer 

of a Luxury Motor Company is 2 cars per day. What is the 
probability that exactly 3 high end cars will be sold tomorrow? 

Solution : We have the values of 

μ = 2, the average number of high end car are sold per day 

X = 3, probability that 3 high end cars will be sold tomorrow 

e = 2.71828, a constant 

 
By using the Poiss

(
on F

)
o

(
rmu

)
la we get : 

P ( X ′, μ ) = 
X !

 

(2.71828
−2 )× (2

3) 
P (3; 2) = 

3!
 

P (3; 2) = 
(0.13534) × (8) 

P (3; 2) = 0.180 

 

Thus, the probability of selling 3 high end cars by tomorrow 
is 0.180. 

 

1.7 CONTINUOUS DISTRIBUTION : THE NORMAL 
DISTRIBUTION      

The normal distribution refers to a family of continuous 
probability distribution. It is also known as the Goussian distribution 
& the bell curve. It is a probability function that describes how the 
values of a variable are distributed. It is a symmetric distribution 
where most of the observations cluster around the central peak and 
the probabilities for values further away from the mean taper off 
equally in both directions. Extreme values in both tails of the 
distribution are similarly unlikely. 

The normal equation for the normal distribution when the 
value of the random variable X is : 

f ( X ) = (1 / )exp(− ( x − μ )2 
/ 2σ 2 ) 

 

X → normal random variable, 

μ → mean 

σ → standard deviation 

π → approximately 3.14159 

−∞ < X < ∞ 



 
  

e → approximately 2.71828 

 
The normal equation is the probability density function for 

the normal distribution. 

The Normal curve: The normal distribution depends on two factors 
- the mean and the standard deviation. The mean of the distribution 
determines the location of the centre of the graph, and the standard 
deviation determines the height and width of the graph. All normal 
distributions look like a symmetric, bell-shaped curve as show 
below: 

Figure No. 1.1 
 

When the standard deviation is small, the curve is tall and 
narrow and when the standard deviation is big, the curve is short 
and wide. 

 
Probability and Normal curve 

 
The normal distribution is a continuous probability 

distribution, where 

 

→ the total area under the normal curve is equal to 1 

→ the probability that a normal random variable X equals any 

particular value is 0 

→ the probability that X is greater than a equals the area under the 

normal curve bounded by a and plus infinity (indicated by non- 
shaded area in the figure below) 

→ the probability that X is less than a equals the area under the 

normal curve bounded by a and minus infinity (indicated by the 
shaded area in the figure below) 



 
  

Figure No. 1.2 
 

There are some important features of the normal distribution 
as follows: 

 
1. The distribution is symmetrical about the mean, which equals 

the median and the mode. 

2. About 68% of the area under the curve falls within 1 standard 
deviation of the mean. 

3. About 95% of the area under the curve falls within 2 standard 
deviation of the mean. 

4. About 99.7% of the area under the curve falls within 3 standard 
deviations of the mean. 

 
These last 3 points are collectively known as the empirical 

rule or the 68 - 95 - 99.7 rules. Let us discuss it with an example of 
an express food delivery by a Restaurant. Assuming that a mean 
delivery time of 30 minutes and a standard deviation of 5 minutes. 
Using the Empirical Rule. We can determine that 68% of the 
delivery times are between 25-35 minutes (30 + / - 5), 95% are 
between 20 - 40 minutes (30 + / - 2 x 5), 99.7% are between 15 - 

45 minutes (30 + / - 3 x 5). 
 

Suppose, an average tubelight manufactured by ABC 
Corporation lasts 300 days with a standard deviation of 50 days. 
Assuming that tubelight life is normally distributed, what is the 
probability that ABC corporation‟s tubelight will last at most 365 
days? 

Solution : Given a mean score of 300 days & a standard deviation 
of 50 days, we want to find the cumulative probability that tubelight 
life is less than or equal to 365 days. Thus, 



 
  

→ the value of the normal random variable is 365 days. 

→ the mean is equal to 300 days. 

→ the standard deviation is equal to 50 days. 
 

 
we get 

By entering these values to find out cumulative probability 

 

P ( X ≤ 365) = 0.90 

 

Hence, there is a 90% chance that a tubelight will burn out 
within 365 days. 

 

1.8  Key Words  
 
Probability – Probability is a measure of the likelihood that a 
particular event will occur. 
 

 Random Variables- A random variable is a variable whose possible 
values are outcomes of a random phenomenon. 
 
 Correlation- Correlation measures the statistical association 
between two variables. 
 
Covariance- Covariance is a measure of how much two random 
variables vary together. 
 
Large Numbers- Large Numbers is a fundamental theorem in 
probability and statistics. 
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UNNIT-II 

COVARIANCE AND CORRELATION 
 

Unit Structure: 
 

2.0 Objectives 
2.1 Introduction 
2.2 Covariance 
2.3 Correlation Analysis 
2.4 Methods of Studying Correlation 
2.5 The Law of Large Numbers 
2.6 References 

 

2.0 OBJECTIVES 
 

After going to this module you will be able : 

• To understand the meaning of covariance and correlation. 

• To understand the method of studying correlation. 

• To understand the law of large numbers. 
 

2.1 INTRODUCTION 
 

 
Covariance is a measure used to determine how much two random 
variables differ by its respective mean and Correlation is a 
statistical method which helps in analysing the relationship between 
two or more variables. The value of the covariance coefficient lies 

between −∞ and +∞ and the value of correlation coefficient lies 
between -1 and +1. 

 

2.2 COVARIANCE 
 

Covariance is a measure used to determine how much two random 
variables differ by its respective mean. In other words, the prefix 
„Co‟ refers to a joint action and variance refers to the change. In 
covariance, two variables are related based on how these variables 
change in relation with each other. The value of the covariance 
coefficient lies between −∞ and +∞ . 

 
For population, 

∑(( Xi − X )(Yi − Y )) 
COV ( X ,Y ) = i=1  

n 



 
  

n 

Where X ,Y → two random variables 
 

X → mean of random variable X 

Y → mean of random variable Y 

n → length of random variable X, Y 
 

For sample  

∑(( Xi − X  )(Yi − Y )) 
COV ( X ,Y ) = i=1  

n − 1 

 

X & Y → mean of given sample set 

n → total number of sample 

Xi and Yi individual sample of set 

 

2.3  CORRELATION ANALYSIS  

Correlation is a statistical method which helps in analyzing 
the relationship between two or more variables. The study of 
correlation is useful due to following reasons: 

1) Since most of the variables have some kind of relationship, 
quantification of it is necessary to learn more about them. 

 
2) Correlation is a first step towards estimation or prediction of 
unknown values of the variables. 

3) An understanding of the degree and nature of correlation 
between two or more variables helps in reducing uncertainties 
about the economic behaviour of important variables like price level 
and money supply, interest rate and investment, taxation and 
willingness to work, etc. 

Correlation is classified into three ways: 
1) Positive and Negative correlation (Depends upon the 
direction of change) : When both the variables change in the 
same direction, (i.e. they increase or decrease together) it is 
positive correlation. For example when price rises, supply also 
increases, when income falls, consumption also declines. When 
increase in one variable is accompanied by a fall in other, it is 
negative correlation. For example, increase in price leads to fall in 
demand; increase in interest rate is accompanied by a fall in 
investment. 

 
2) Simple and Multiple correlation (Depends upon number of 
variables under study) : Simple correlation is the relationship 



 
  

between two variables like height and weight of a person, or wage 
rate and employment in the economy. Multiple correlations, on the 
other hand, examines relationship between three or more variables. 
For example a relationship between production of rice per acre, 
rainfall and use of fertilizers is multiple in nature. 

3) Linear and non-linear (Depends on the ratio of change 
between two variables) : When a change in one variable is in 
constant ratio with a change in other, it is linear relationship. For 
example doubling the amount of fertilizers used exactly doubles the 
yield per acre, it is linear relationship. Non-linear relationship exists 
when a change in one variable is not in constant ratio with a 
change in other. In this case doubling the amount of fertilizers may 
not exactly double the output per acre. 

 

2.4  METHODS OF STUDYING CORRELATION  

Following important method of studying correlation between 
two variable will be discussed in this unit. 

• Scatter diagram method. 

• Karl Pearson‟s Coefficient of Correlation. 

• Rank Correlation Coefficient. 

2.4.1 Scatter diagram 
It is the simplest method of studying correlation, by using 

graphical method. Under this method, a given data about two 
variables is plotted in terms of dots. By looking at the spread or 
scatter of these dots, a quick idea about the degree and nature of 
correlation between the two variables can be obtained. Greater the 
spread of the plotted points, lesser is an association between two 
variables. That is, if the two variable are closely related, the scatter 
of the points representing them will be less and vice versa. 

Following are different scatter diagrams explaining the 
correlation of different degrees and directions. 

 



 
  

 

 

 
1) Figure 1 represents positive perfect correlation where coefficient 

of correlation (r) = 1. 

2) Figure 2 represents perfect negative correlation where 
coefficient of correlation (r) = -1 

3) Figure 3 indicates high degree positive correlation where r = + 
0.5 or more. 

4) Figure 4 indicates high degree negative correlation where r = - 
0.5 or more. 

5) Figure 5 represents low degree positive correlation where the 
scatter of the points is more. 

6) Figure 6 represents low degree negative correlation where the 
scatter for the points is more in negative direction. 

7) Figure 7 indicates that there is no correlation between two 
variables. Here r = 0. 

 
Thus, the closeness and direction of points representing the 

values of two variables determine the correlation between the 
same. 

Advantages and Limitations of this method. 

• It is a simple method giving very quick idea about the nature of 
correlation. 

• It does not involve any mathematical calculations. 

• It is not influenced by the extreme values of variables. 

• This method, however, does not give exact value of 



 
  

• coefficient of correlation and hence is less useful for further 

• statistical treatment. 

2.4.2 Karl Pearson’s Coefficient of Correlation (r) : 
This is the most widely used method of studying a bi-variate 

correlation. Under this method, value of r can be obtained by using 
any of the following three ways. 

I) Direct Method of finding correlation coefficient 

 

 

 

Ex.1 Calculate Karl Pearson‟s coefficient of correlation using direct 
method. 

 



 
  

 

 

 

Ex. 2 Calculate Karl Pearson‟s coefficient of correlation by taking 
deviations from actual mean. 

 



 
  

 

 

 
Ex.3 Compute Karl Pearson‟s coefficient of correlation by taking 
deviations from assumed mean. 

 
(This method is used when the actual means are in fractions) 

 

 

For the above data, actual means X and Y  will be in fraction. So 

we can take assumed means for both the variables and then find 
the deviations dx and dy . 

Let assumed means for X = 9 
Let assumed mean for Y = 29 

 



 
  

 

 

 
Since r = 0.89, there is high degree positive correlation between 
Xand Y. 

 
 
 

Check your progress 
1) Find correlation coefficient for the following data. 

 

 

3) 

 

 
2.4.3 Rank Correlation: 

For certain categories like beauty, honestry, etc quantitative 
measurement is not possible. Also sometimes the population under 
study may not be normally distributed. In such cases, instead of 
Karl Pearson‟s co-efficient of correlation, Spearman‟s Rank 
correlation coefficient is calculated. This method is used to the 
determine the level of agreement or disagreement between two 
judges. The calculations involved in this method are much simpler 



 
  

than the earlier method. Rank correlation is calculated using the 
following formula. 

 

 
Rank correlation is computed in following two ways: 
1) When ranks are given. 
2) When ranks are not given. 

 
Rank correlation when ranks are given: 
Ex.4 Following are the ranks given by two judges in a beauty 
contest. Find rank correlation coefficient. 

 

 

 
Since rank correlation co-efficient is -0.5, there is a moderate 
negative correlation between the ranking by two judges. 

 
Calculation of rank correlation co-efficient, when the ranks 

are not given: 

Ex.4 Calculate rank correlation for the following data. 



 
  

 

 

 
When the ranks are not given, we have to assign ranks to 

the given data. The ranks can be assigned in ascending (Rank 1 to 
the lowest value) or descending (Rank 1 to the highest value) 
order. 

In this example, ranks are given in descending order. 
The highest value gets rank 1 and so one. 

 

Since rank correlation coefficient is -0.167, the relationship 
between X and Y is low degree negative. 

Check your progress 
Find rank correlation coefficient for the following data 

1) 

 
 
 

 
2) 

 



 
  

 
 

2.5 THE LAW OF LARGE NUMBERS 

The law of large numbers is one of the most important 
theorems in probability theory. It stales that, as a probabilistic 
process is repeated a large number of times, the relative 
frequencies of its possible outcomes will get closer and closer to 
their respective probabilities. The law demonstrates and proves the 
fundamental relationship between the concepts of probability and 
frequency. 

In 1713, Swiss mathematician Jakob Bernoulli proved this 
theorem in this book. It was later refined by other noted 
mathematicians, such as Pafnuty Chebyshev. 

The law of large numbers shows that if you take an 
unpredictable experiment & repeat it enough times, you will end up 
with its average. In technical terms, if you have repeated, 
independent trials, with a probability of success P for each trial, the 
percentage of successes that differ from P converge to 0 as the 
number of trials n tends to infinity. In more simple words, if you 
repeated an experiments many times you will start to see a pattern 
and you will be able to figure out probabilities. 

For e.g. throw a die and then we will get a random number 
(1, 2, 3, 4, 5, 6). If we throw if for 100,000 times and we will get an 
average of 3.5 - which is the expected value. 

Another example is of tossing a coin 1, 2, 4, 10, etc. times, 
the relative frequency of heads can easily happen to be away from 
the expected 50%. That is because 1, 2, 4, 10,… are al small 
number. On the other hand, if we tossed a coin for 1000 or 100000 
times, then the relative frequency will be very close to 50% since 
1000 and 100000 are large numbers. 

Weak Law of large numbers : 
The Law of Large number is sometimes called the Weak 

Law of Large numbers to distinguish it from the Strong Law of 
Large numbers. The two versions of the Law are different 
depending on the mode of convergence. The weak law is weaker 
than the sample mean converges to the expected mean in mean 
square and in probability. The strong law of large numbers is where 

the sample mean M converges to the expected mean μ with 

probability. 
 

2.6 Key Words 
 

Test- In a statistical context, a test refers to a formal procedure for making 
an inference about a population parameter based on a sample of data. 

 

Hypothesis- A hypothesis is a statement or assumption about a population 
parameter that researchers seek to test. 

 

Distribution- In statistics, a distribution refers to the pattern of values that a 
variable can take and how frequently each value occurs. It provides a way 
to describe the likelihood of different outcomes in a random experiment. 



 
  

Central Limit- The Central Limit Theorem is a fundamental concept in 
statistics. 

 

Two Tailed Test- In hypothesis testing, a two-tailed test is a statistical test 
in which the critical region is on both sides of the distribution. It is used 
when the researcher is interested in detecting whether the population 
parameter is different from the hypothesized value in either direction. 
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UNIT-III 

TEST OF HYPOTHESIS: BASIC 
CONCEPTS AND PROCEDURE 

Unit Structure: 

 
3.0 Objectives 

3.1 Introduction 

3.2 Hypothesis Testing 

3.3 Basic Concepts in Hypothesis Testing 

3.4 Procession of Hypotheses Testing 

3.5 Procedure for Testing of Hypotheses 

3.6 Reference 

 

3.0 OBJECTIVES 
 

• To understand the meaning of hypothesis testing. 

• To understand the basic concepts of hypothesis testing. 

• To understand the procession and procedure of hypothesis 
testing. 

 

3.1 INTRODUCTION 
 

 
Hypothesis is the proposed assumption explanation, 

supposition or solution to be proved or disproved. It is considered 
as main instrument in research. It stands for the midpoint in the 
research. If hypothesis is not formulated researcher cannot 
progress effectively. The main task in research is to test its record 
with facts. If hypothesis is proved the solution can be formed and if 
it is not proved then alternative hypotheses needs to be formulated 
and tested. 

So, with hypothesis formulated it will help up to decide the 
type of data require to be collected. 

The important function in research is formulation of 
hypothesis. The entire research activity is directed towards making 
of hypothesis. Research can begin with well formulated hypothesis 
or if may be the end product in research work. Hypothesis gives us 
guidelines for an investigation to the basis of previous available 
information. In absence of this research will called underquired data 



 
  

and may eliminate required one. Thus hypothesis is an assumption 
which can be put to test to decide its validity. 

 

3.2 HYPOTHESIS TESTING 
 

In business research and social science research, different 
approaches are used to study variety issues. This type of research 
may be format or informal, all research begins with generalized 
idea in form of hypothesis. A research question is usually there. In 
the beginning research effort are made for area of study or it may 
take form of question abut relationship between two or more 
variable. For example do good working conditions improve 
employee productivity or another question might be now working 
conditions influence the employees work. 

 

3.3 BASIC CONCEPTS IN HYPOTHESIS TESTING 
 

Basic concepts in the context of testing of hypotheses need 
to be explained. Those are: 

3.3.1 Null and Alternative hypotheses: 
In the context of statistical analysis, we often talk about null 

hypothesis and alternative hypothesis. If we are to compare method 
A with method B about its superiority and if we proceed on the 
assumption that both methods are equally good, then this 
assumption is termed as the null hypothesis. As against this, we 
may think that the method A is superior or the method B is inferior, 
we are then stating what is termed as alternative hypothesis. The 
null hypothesis is generally symbolized as H0 and the alternative 
hypothesis as Ha. Suppose we want to test the hypothesis that the 
population mean (μ) is equal to the hypothesized mean (μH0) = 
100. Then we would say that the null hypothesis is that the 
population mean is equal to the hypothesized mean 100 and 
symbolically we can express as: 

100 : 0 0 H H 
If our sample results do not support this null hypothesis; we 

should conclude that something else is true. What we conclude 
rejecting the null hypothesis is known as alternative hypothesis. In 
other words, the set of alternatives to the null hypothesis is referred 
to as the alternative hypothesis. If we accept H0, then we are 
rejecting Ha and if we reject H0, then we are accepting Ha. For 
100: 0 0 H H , we may consider three possible alternative 
hypotheses as follows: 

If a hypothesis is of the type 0 H , then we call such a 
hypothesis as simple (for specific) hypothesis but if it is of the type 



 
  

0 H or 0 H or 0 H then we call it a composite (or nonspecific) 
hypothesis. 

 

The null hypothesis and the alternative hypothesis are chose 
before the sample is drawn (the researcher must avoid the error of 
deriving hypotheses from the data that he collects and then testing 
the hypotheses from the same data.) In the choice of null 
hypothesis, the following considerations are usually kept in view: 
1) Alternative hypothesis is usually the one which one wishes to 
prove and the null hypothesis is the one which one wishes to 
disprove. Thus, a null hypothesis represents the hypothesis we are 
trying to reject and alternative hypothesis represents all other 
possibilities. 

2) If the rejection of a certain hypothesis when it is actually true 
involves great risk, it is taken as null hypothesis because then the 
probability of rejecting it when it is true is a (the level of 
significance) which is chosen very small. 

3) Null hypothesis should always be specific hypothesis i.e., it 
should not state about or approximately a certain value. 

 
Generally, in hypothesis testing we proceed on the basis of 

null hypothesis, keeping the alternative hypothesis in view. Why 
so? The answer is that on the assumption that null hypothesis is 
true, one can assign the probabilities to different possible sample 
results, but this cannot be done if we proceed with the alternative 
hypothesis. Hence, the use of null hypothesis (at times also known 
as statistical hypothesis) is quite frequent. 

3.3.2 Parameter and Statistic: 
The main objective of sampling is to draw inference about 

the characteristics of the population on the basis of a study made 
on the units of a sample. The statistical measures calculated from 
the numerical data obtained from population units are known as 
Parameters. Thus, a parameter may be defined as a characteristic 
of a population based on all the units of the population. While the 
statistical measures calculated from the numerical data obtained 



 
  

from sample units are known as Statistics. Thus a statistic may be 
defined as a statistical measure of sample observation and as such 
it is a function of sample observations. If the sample observations 
are denoted by x1, x2, x3, ………, xn. Then, a statistic T may be 
expressed as T = f (x1, x2, x3, ………, xn). 

 

 
3.3.3 Type I and Type II errors: 

In the context of testing of hypothesis, there are basically 
two types of errors we can make. We may reject H0 when H0 is 
true and we may accept H0 when in fact H0 is not true. The former 
is known as Type I error and the latter as Type II error. In other 
words, Type I error means rejection of hypothesis which should 
have been accepted and Type II error means accepting the 
hypothesis which should have been rejected. Type I error is 
denoted by (alpha) known as error, also called the level of 
significance of test; and Type II error is denoted by (beta) known as 
error. In a tabular form the said two errors can be presented as 
follows: 

 

The probability of Type I error is usually determined in 
advance and is understood as the level of significance of testing the 
hypothesis. If type I error is fixed at 5 per cent, it means that there 
are about 5 chances in 100 that we will reject H0 when H0 is true. 

We can control Type I error just by fixing it at a lower level. 
For instance, if we fix it at 1 per cent, we will say that the maximum 
probability of committing Type I error would only be 0.01. 

But with a fixed sample size, n, when we try to reduce Type I 
error, the probability of committing Type II error increases. Both 
types of errors cannot be reduced simultaneously. There is a trade- 
off between these two types of errors which means that the 
probability of making one type of error can only be reduced if we 
are willing to increase the probability of making the other type of 
error. To deal with this trade-off in business situations, decision 
makers decide the appropriate level of Type I error by examining 



 
  

the costs or penalties attached to both types of errors. If Type I 
error involves the time and trouble of reworking a batch of 
chemicals that should have been accepted, whereas Type II error 
means taking a chance that an entire group of users of this 
chemical compound will be poisoned, then in such a situation one 
should prefer a Type I error to a Type II error. As a result one must 
set very high level for Type I error in one's testing technique of a 
given hypothesis. Hence, in the testing of hypothesis, one must 
make all possible effort to strike an adequate balance between 
Type I and Type II errors. 

3.3.4 The level of significance: 
It is a very important concept in the context of hypothesis 

testing. We reject a null hypothesis on the basis of the results 
obtained from the sample. When is such a rejection justifiable? 

Obviously, when it is not a chance outcome. Statisticians 
generally consider that an event is improbable, only if it is among 
the extreme 5 per cent or 1 per cent of the possible outcomes. To 
illustrate, supposing we are studying the problem of non attendance 
in lecture among college students. Then, the entire number of 
college students is our population and the number is very large. 
The study is conducted by selecting a sample from this population 
and it gives some result (outcome). Now, it is possible to draw a 
large number of different samples of a given size from this 
population and each sample will give some result called statistic. 
These statistics have a probability distribution if the sampling is 
based on probability. The distribution of statistic is called a 
„sampling distribution‟. This distribution is normal, if the population 
is normal and sample size is large i.e. greater than 30. When we 
reject a null hypothesis at say 5 per cent level, it implies that only 5 
per cent of sample values are extreme or highly improbable and our 
results are probable to the extent of 95 per cent (i.e. 1 – .05 = 0.95). 

Figure No. 3.1 
 

For example, above Figure shows a normal probability 
curve. The total area under this curve is one. The shaded areas at 
both extremes show the improbable outcomes. This area together 



 
  

is 0.05 or 5 per cent. It is called the region of rejection. The other 
area is the acceptance region. The percentage that divides the 
entire area into region of rejection and region of acceptance is 
called the level of significance. The acceptance region, which is 
0.95 or 95 per cent of the total area, is called the level of 
confidence. These are probability levels. The level indicates the 
confidence with which the null hypothesis is rejected. It is common 
to use 1 per cent or 5 per cent levels of significance. Thus, the 
decision rule is specified in terms of a specific level of significance. 
If the sample result falls within the specified region of rejection, the 
null hypothesis is rejected at that level of significance. It implies that 
there is only a specified chance or probability (say, 1 per cent or 5 
per cent) that we are rejecting H0, even when it is true. i.e. a 
researcher is taking the risk of rejecting a true hypothesis with a 
probability 0.05 or 0.01 only. The level of significance is usually 
determined in advance of testing the hypothesis. 

3.3.5 Critical region: 
As shown in the above figure, the shaded areas at both 

extremes called the Critical Region, because this is the region of 
rejection of the null hypothesis H0, according to the testing 
procedure specified. 

Check your progress: 

1. Which basic concepts regarding hypothesis testing have you 
studied? 

2. Define: 

i. Null Hypothesis 

ii. Alternative Hypothesis 

3. What do you mean by parameter and statistic? 

4. What are the Type I and Type II errors? 

5. What are level of significance and level of confidence? 

6. What is Critical Region? 
 

 

 

 

 

 

3.4 PROCESSION OF HYPOTHESES TESTING: 
 

Hypotheses testing is a systematic method. It is used to 
evaluate the data collected. This serve as aid in the process of 
decision making, the testing of hypotheses conducted through 
several steps which are given below. 



 
  

a. State the hypotheses of interest 
b. Determine the appropriate test statistic 
c. Specify the level of statistical significance. 
d. Determine the decision rule for rejecting or not rejecting null 

hypotheses. 
e. Collect the data and perform the needed calculations. 

f. Decide to reject or not to reject the null hypotheses. 
 

In order to provide more details on the above steps in the 
process of hypotheses testing each of test will be explained here 
with suitable example to make steps easy to understand. 

1. Stating the Hypotheses 
In statistical analysis of any research study if includes at 

least two hypotheses one is null hypotheses and another is 
alternative hypotheses. 

The hypotheses being tested is referred as the null 
hypotheses and it is designated as HO. It is also referred as 
hypotheses of difference. It should include a statement which has 
to be proved wrong. 

The alternative hypotheses present the alternative to null 
hypotheses. It includes the statement of inequality. The null 
hypotheses are and alternative hypotheses are complimentary. 

The null hypothesis is the statement that is believed to be 
correct through analysis which is based on this null hypotheses. For 
example, the null hypotheses might state the average are for 
entering management institute is 20 years. So average age for 
institute entry = 20 years 

2. Determining Appropriate Test Statistic 
The appropriate test statistic which is to be used in statistic, 

which is to be used in statistical hypotheses testing, is based on 
various characteristics of sample population of interest including 
sample size and distribution. 

The test statistic can assume many numerical values. As the 
value of test statistic has significant on decision one must use the 
appropriate statistic in order to obtain meaningful results. The 
formula to be used while testing population means is. 

Z - test statistic, x - mean of sample μ - mean of population, 

σ - standard deviation, n – number of sample. 

 
3. The Significance Level 

As already explain, null hypothesis can be rejected or fail to 
reject null hypotheses. A null hypothesis that is rejected may in 
really be true or false. 



 
  

A null hypothesis that fails to be rejected may in reality be 
true or false. The outcome that a researcher desires is to reject 
false null hypotheses or fail to reject true null hypotheses. However 
there is always possibility of rejecting a true hypotheses or failing to 
reject false hypotheses. 

Type I and Type II Errors 
Type I: error is rejecting a null hypotheses that is true 

Type II: Error is failing to rejected a false null hypotheses 

 
The probability of committing a type I error is termed as a A 

and Type II error is termed as B. 

4. Decision Rule 
Before collection and analyses of data it is necessary to 

decide under which conditions the null hy7potheses will be rejected 
or fail to he rejected. The decision rule can be stated in terms of 
computed test statistics or in probabilistic terms. The same decision 
will he applicable any of the method so selected. 

5. Data Collection and Calculation Performance 
In research process at early stage method of data collection 

is decided. Once the research problem is decided that immediately 
decision in respect of type and sources of data should be taken. It 
must clear that fact that, which type of data will be needed for the 
purpose of the study and now researcher has a plan to collect 
required data. 

The decision will provide base for processing and analysing 
of data. It is advisable to make use of approved methods of 
research for collecting and analysing of data. 

6. Decision on Null Hypotheses 
The decision regarding null hypotheses in an important step 

in the process of the decision rule. 
 

Under the said decision rule one has to reject or fail to reject 
the null hypotheses. If null hypotheses is rejected than alternative 
hypotheses can be accepted. If one fails to reject null hypotheses 
one can only suggest that null hypotheses may be true. 



 
  

7. Two Failed and One Failed Tests 
In the case of testing of hypotheses, above referred both 

terms are quite important and they must be clearly understood. A 
two failed test rejects the null hypotheses. 

a. if sample mean is significantly 
b. higher or lower than the 
c. hypothesized value of mean of the population 
d. such a test is appropriate, when the null hypotheses is some 

specified value and the alternate hypotheses is a value not 
equal to the specified value and the alternative hypotheses is 
value not equal to the specified value of null hypotheses. 

 

3.5  PROCEDURE FOR TESTING OF HYPOTHESES:  

Testing of hypotheses mean to decide the validity of the 
hypotheses on the basis of the data collected by researcher. In 
testing procedure we have to decide weather null hypotheses is 
accepted or not accepted. 

This requirement conducted through several steps between 
the cause of two action i.e. relation or acceptance of null 
hypothesis. The steps involved in testing of hypotheses are given 
below. 

1. Setting up of Hypotheses 
This step consist of hypotheses setting. In this step format 

statement in relation to hypotheses in made. In traditional practice 
instead of one, two hypotheses are set. In case if one hypotheses 
is rejected than other hypotheses is accepted. Hypotheses should 
be clearly stated in respect of the nature of the research problem. 

 
There are hypotheses are. 
a. Null hypotheses and 
b. Alternative hypotheses. 

 
Acceptance or rejection of hypotheses is based on the 

sampling information. Any sample which we draw from the 
population will vary from it therefore it is necessary to judge 
whether there difference are statistically significant or insignificant. 

The formulation of hypotheses is an important step which 
must be accomplished and necessary care should be taken as per 
the requirement and object of the research problem under 
construction. 

This should also specify the whether one failed or two failed 
test will be used. 



 
  

2. Selecting Statistical Technique 
In this stage we will make selection of statistical technique 

which are going to he used. There are various statistical test which 
are being used in testing of hypotheses. There tests are 

Z – Test 
T – Test 
F – Test 
X2 

 
It is the job of the researcher to make proper selection of the 

test. 
 

Z- Test is used when hypotheses is related to a large 
sample. (30 or more) 

 
T- Test is used when hypotheses is related to small sample 

(Less than 30) 
 

The selection of test will be dependent on various 
consideration like, variable involved, sample size, type of data and 
whether samples are related or independent. 

3. Selecting Level of Significance 
This stage consists of making selection of desired level of 

significance. The researcher should specify level of significance 
because testing of hypotheses is based on pre-determined level of 
significance. The rejection or retention of hypothesis by the 
researcher is also based on the significance level. 

The level of significance is generally expressed in 
percentage from such as 5% or 1%, 5% level of significance is 
accepted by the researcher, it means he will be making wrong 
decision about 5% of time. In case if hypotheses is reject at this 
level of 5% he will be entering risk hypotheses rejection ???out of 
100 occasions. 

The following factors may affect the level of significance. 
- The magnitude difference between sample mean 
- The size of sample 
- The validity of measurement 

 
4. Determining Sampling Distribution 

The next step after deciding significance level in testing of 
hypothesis is to determine the appropriate sampling distribution. It 
is, normal distribution and „t‟ – distribution in which choice can be 
excised. 



 
  

5. Selecting Sample and Value 
In this step random sample is selected and appropriate value 

is computed from the sample data relating to the test statistic by 
utilizing the relevant distribution. 

6. Performance Computation 
In this step calculation of performance is done. The 

calculation includes testing statistics and standard error. 
 

A hypothesis is tested for the following four possibilities, that 
the hypotheses is 

 
a- True, but test lead to its rejection 
b- False, but test lead to its acceptance 
c- True, but test lead to its acceptance 
d- False, but test lead to its rejection 

 
Out of the above four possibilities a and b lends to wrong 

decision. In this case a lends to Type I error and, b lends to Type II 
error. 

7. Statistical Decision 
Thus is the step in which we have to draw statistical decision 

involving the acceptance or rejection of hypotheses. 
This will be dependent on whether the calculated value of 

the test falls in the region of acceptance or in the region of rejection 
at given significance level. 

If hypotheses is tested at 5% level and observed set 
recorded the possibilities less than 5% level than we considered 
difference between hypothetical parameter and sample statistics is 
significant. 

 --------------------------------------------------------------------------------------------------------------  

3.6  Key Words  

Regression- Regression is a statistical technique used to model and 
analyze the relationship between a dependent variable and one or 
more independent variables. 

R Square- R Square, or the coefficient of determination, is a 
statistical measure that represents the proportion of the variance in 
the dependent variable that is predictable from the independent 
variables in a regression model. 

Coefficient- In the context of regression analysis, a coefficient 
represents the slope or the degree of change in the dependent 
variable for a one-unit change in the independent variable, 
assuming all other variables are held constant. 

Linear- Linear refers to a relationship or a model that follows a 
straight-line pattern. In the context of linear regression, it means 
that the relationship between the independent variable(s) and the 



 
  

dependent variable is assumed to be a straight line. 
 

3.7  REFERENCE  
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UNIT-IV  

TEST OF HYPOTHESIS: VARIOUS DISTRIBUTION 
TEST 

Unit Structure: 

 
4.0 Objectives 

4.1 Introduction 

4.2 Testing of Hypotheses using various distribution test 

4.3 Standardization: Calculating Z - scores 

4.4 Uses of t-Test 

4.5 F-Test 

4.6 Chi-square Test 

4.7 Reference 
 

4.0 OBJECTIVES 
 

• To understand the various distribution tests of hypothesis 
testing. 

• To understand the uses of t – test. 

• To understand the uses of F test and Chi-square test. 
 

4.1 INTRODUCTION 
 

The test of significance used for hypothesis testing is of two types 
the parametric and non-parametric test. 

The parametric test is more powerful, but they depend on 
the parameters or characteristics of the population. They are based 
on the following assumptions. 

1. The observations or values must be independent. 
2. The population from which the sample is drawn on a random 

basis should be normally distributed. 
3. The population should have equal variances. 
4. The data should be measured at least at interval level so that 
arithmetic operations can be used. 



 
  

 
 

4.2 TESTING OF HYPOTHESIS USING VARIOUS 
DISTRIBUTION TEST 

A. The Parametric Tests: 
a) The Z – Test 

Prof. R.A. fisher has develop the Z Test. It is based on the 
normal distribution. It is widely used for testing the significance of 
several statistics such as mean, median, mode, coefficient of 
correlation and others. This test is used even when binominal 
distribution or t distribution is applicable on the presumption that 
such a distribution lends to approximate normal distribution as the 
sample size (n) become larger. 

b) The T – Test 
The T – Test was developed by W.S. Gossel around 1915 

since he published his finding under a bon name „student‟, it is 
known as student‟s t – test. It is suitable for testing the significance 
of a sample man or for judging the significance of difference 
between the mams of two samples, when the samples are less 
than 30 in number and when the population variance is not known. 
When two samples are related, the paired t – test is used. The t – 
test can also be used for testing the significance of the coefficient of 
simple and partial correlation. 

In determining whether the mean of a sample drawn from a 
normal population deviates significantly from a stated value when 
variance of population is unknown, we calculate the statistic. 

 

 
Where, 

x = the mean of sample 

μ = the actually or hypothetical mean of population 

n = the sample size 

s = standard deviation of the samples 

 

 
Example 

Ten oil tins are taken at random from an automatic filling 
machine the mean weight of the 10 tins is 15.8 kg and standard 
deviation 0.5 kg. Does the sample mean differ significantly from the 
intended weight of 16 kg? 

(given for ν , to 0.05 – 2.26) 



 
  

Solution: 
Let us make the hypothesis tat the sample mean does not 

differ significantly from the intended weight of 16 kg applying t – 
test . 

 

 
For 

The calculated value of t is less than the table value. The 
hypothesis is accepted. 

 
3. The f- test 

The f – test is based on f – distribution (which is a 
distribution skewed to the right, and tends to be more symmetrical, 
as the number of degrees of freedom in the numerator and 
denominator increases) 

The f- test is used to compare the variances of two 
independent sample means at a time. It is also used for judging the 
significance of multiple correlation coefficients. 

B The Non-parametric Tests 
The non-parametric tests are population free tests, as they 

are not based on the characteristics of population. They do not 
specify normally distributed population or equal variances. They are 
easy to understand and to use. 

The important non parametric tests are: 
- The chi-square test 
- The median test 
- The Mann-Whitney U test 
- The sign test 
- The Wilcoxin matched –Paris test 
- The Kolmogorow Smornov test. 



 
  

The Chi-Square Test (x2) 
The Chi-Square test is the most popular non-parametric test 

of significance in social science research. It is used to make 
comparisons between two or more nominal variables. Unlike the 
other test of significance, the chi-square is used to make 
comparisons between frequencies rather than between mean 
scares. This test evaluated whether the difference between the 
observed frequencies and the expected frequencies under the null 
hypothesis can be attributed to chance or actual population 
differences. A chi-square value is obtained by formula. 

 

Where, 

k 
2 = chi-square 

f A = observed or actual frequency 

fe = expected frequency 

k 
2 = can also determined with the help of the following formula. 

 

 
N = total of frequencies 

 
Example, 

Weight of 7 persons is given as below: 

 

 
In this information we can say, variance of distribution of 

sample of 7 persons was drawn is equal to weight of 30 kg. 
 

Test this at 5% of 1% level of significance. 



 
  

Solution: 
Above information we will workout variance of sample data. 

 

 

 
Degree of freedom is (n-1) = (7-1) = 6 

 
At 5% Ye level of significance x2 =12.592 

1% level = 16.812 
Value are greater than x2 =8.6 

 
So we accept null hypotheses and variance at both 5 and 1 

pe level is significant. So sample of 30 kg is taken from the 
population. 

The standard normal distribution and its application: 
 

Normal distributions do not necessarily have the same 
means and standard deviations. A normal distribution with a mean 
of 0 and a standard deviation of 1 is called a standard normal 
distribution. It is centred at zero and the degree to which a given 
measurement deviates from the mean is given by the standard 
deviation. This distribution is also known as the Z - distribution. 

A value on the standard normal distribution is known as a 
standard deviations above or below the mean that specific 
observation falls. For example, a standard score of 1.5 indicates 
that the observation is 1.5 standard deviation above the mean. On 
the other hand, a negative score represents a value below the 
average. The mean has a Z-score of 0. 



 
  

 
 

4.3 STANDARDIZATION : CALCULATING Z - scores 

The process of standardization allows to compare 
observations and calculate probabilities across different 
populations. i.e. it allows to take observations drawn from normally 
distributed populations that have different means and standard 
deviations and place then on a standard scale. To standardize the 
data, we need to convert the raw measurements into Z-scores. 

To calculate the standard score for an observation, following 
formula can be used. 

 

Z =
 X − μ 

σ 

X → raw value of the measurement of interest 

μ and σ→ parameters for the population from which the 

observations is drawn. 
 

Let us discuss it with an example of mangoes and Apples. 
Let‟s compare their weights. Mangoes weights 110 grams and an 
Apples weights 100 grams. By comparing mere their raw value we 
can observe that the mango weights more than the Apple. Now we 
will compare their standard scores. Assuming that the weights of 
mangoes and Apples follow a normal distribution with the following 
parameter values : 

 

 Mangoes Apples 

Mean weight grams 100 140 

Standard deviation 15 25 

 
We will use these value to get Z - score : 

 
Mangoes = (110 - 100) / 15 = 0.667 
Apples = (100 - 140) / 25 = -1.6 

 
The Z - score for the Mangoes is (0.667) positive which 

means that Mangoes weight more than the average Apple. It is not 
an extreme value by any means, but it is above average for 
mangoes. On the other hand the Apples has fairly negative Z - 
score (- 1.6). It is much below the mean weight for apples. 

To find areas under the curve of a normal distribution for it, 
we will use Z - score table. 

Let‟s take the Z-score for mango (0.667) and use it to 
determine its weight percentile. A percentile is a proportion of a 
population that falls below a specific value. To determine percentile, 



 
  

 
 

we need to find the area that corresponds to the range of Z scores 
that are less than 0.667. The closet value in Z - score table to it is 
0.65. The table value indicates that the are of the curve between - 
0.65 and +0.65 is 48.43%. But we want the area that is less than a 
Z-score of 0.65. 

 
The two halves of the normal distribution are mirror images 

of each other. So if the area for the interval from -0.65 and +0.65 is 
48.43%, then the range from 0 to +0.65 must be half of that 

48.43 
= 24.215% . 

2 

We also know that the area for all scores less than zero is 
half (50%) of the distribution. 

 
Therefore the area for all scores upto 0.65, 0.65 = 50% + 

24.215% = 74.215% 
 

So, the Mango is at approximately the 74th percentile. 
 

Students t distribution: 
In case of large sample test Z - test is 

 

Z =
 X − μ 

: N (0,1) 

 

If σ 2 → population variance is unknown then sample 

variance S2 is used and normal test is applied. But when sample is 

small, the unbiased estimate of the population variance is used i.e. 
 

 

Unbiased Variance of sample S
2 = ∑( X − X )2

 
n − 1 

Biased Variance S
2 = ∑( X − X )2

 

n 
 

In small samples σ 2 is replaced by S
2 and not by S 

2 . 

 
Student t : If x1, x2,...........xn is a random sample of size n from a 

normal population with mean μ and variance σ 2 

statistic is given by 

 
Where X = Sample mean 

μ = Population mean 

then students t 



 
  

S2 

n 

S2 

n 

  

 
 

t = 
X − μ  

 

 

S 
2 = ∑( X − X )2

 
 

n − 1 
 

 

4.4 USES OF T - TEST 

1) t - test for single Mean: 

It is used to test the hypothesis that the population mean μ 

has specified value of μ0 when population standard deviation (σ ) 
is not known and n ≤ 30 we use t - Test. 

 

t = 
X − μ  

 

 

If follows t - distribution with (n - 1) degree of freedom 

S 
2 = 

∑( X − X )2
 

n − 1 

Steps for applying t - Test : 

a) Set up the null hypothesis H0 : μ = μ0 

alternative hypothesis H1 : μ ≠ μ0 (Two tailed test) 

H1 : μ > μ0 or μ < μ0 (one failed test) 

 

b) Find S
2 = 

 2 

n − 1 
or ∑( X − X ) 

2 
= (n − 1) S 

2
 where S

2 → 

unbiased variance. 

 

Biased  Variance S
2 = ∑( X − X )2

 

n 

 

 

or ∑( X − X ) 2 
= nS 

2
 

where S
2 → biased variance. 

Since ∑( X − X )2 
= (n − 1) S 

2 = nS
2
 

or 
S 2 

= 
S 2 

∴ S 
2 =

 n  
× S 

2
 

n n − 1 n − 1 



 
  

 

S 2 

n 

   

14.5 

 
c) Use the values in t - Test and compare calculated value with 
table value for V = n − 1 degree of freedom. 

 

d) If calculated value is greater than table value accept 

vice versa. 

H1 and 

Suppose a group of 5 students has weight 42, 39, 48, 60 
and 41 kg. Can it be said that this sample has come from the 
population whose mean weight is 48 kg? 

Solution : 

 

 Weight (X) ( X − X ) 

1 42 16 (42 - 46)2 

2 39 49 (39 - 46)2 

3 48 4 (48 - 46)2 

4 60 196 (60 - 46)2 

5 41 25 (41 - 46)2 

n = 5 ∑ X = 230 ∑( X − X )2 
= 290 

 

X = 
∑ X

 
n 

= 
230 

= 46 
5 

2 ∑( X − X )2 
290 290 

S = 
n − 1 

= 
5 − 1 

= 
4 

= 72.5 

Where  H0 : μ = 48 (No significant difference between sample 

mean and population mean) 

H1 : μ ≠ 48 (Significant difference between sample and 

population mean) 

t
* = = 

 

t 
* 

= 
2 

= 
2 

3.81 
= 0.525 

Table value of t at 5% level of significance for two tailed 
test for V = 5 - 1 = 4 is 2.776. 

 

t
* < 

0.05 
,V = 4 

2 

 

we accept H0 

 

and conclude that the mean 

weight of the population is 48 kg. 

 
72.5 

5 

  



 
  

x 

y 

   

2 x 

ii) t - Test for difference of means: 
Suppose two independent samples have been taken from 

two normal population having the same mean, the population 

variance are also equal & hypothesis H0 : μx = μy where two 

samples have come from the normal population with the same 

means. 

 

t = 

 

 

X = 
∑ X 

,Y Y ∑( X − X )2 
+ ∑(Y − Y )2 

= ∑ , S 
2 

= 

n n n1 + n2 − 2 

Let us discuss this with the help of the following example. 
 

In an examination 12 students in Class A had a mean score 
of 78 and standard deviation is 6 whereas 15 students in Class B 
had a mean score of 74 with standard deviation 8. Is the significant 
difference between the means of the two classes? 

Solution : 

 

n1 = 12 X = 78 S 
2 = 6 

n2 = 15Y = 74 S 
2 = 8 

 

H0 : μx = μy 

two classes) 

H1 : μx ≠ μy 

classes) 

(no significant difference between the means of the 

(Significant difference between the means of the two 

t
* = 

 

 
2 

X − Y 

S 
1 

+ 
1 

n1 n2 

∑( X − X )2 
+∑(Y − Y )2

 

S  = 
n1 + n2 − 2 

2 ∑ X − X 2 2 

Sx = 

n1 
or ∑( X − X ) = n1Sx 

Similarly ∑(Y − Y )2 
= n S 

2
 

 

  

1 
+ 

1 

n1 n2 



 
  

S  = = 

2 n S 
2 + n S 

2 12 (6)2 +15(8)2
 

1 x 2 y 
 

n1 + n1 − 2 12 +15 − 2 

S 
2 = 

 432 + 960 
= 

1392 
= 55.68

 

25 25 

S = 7.46 

t = 78 − 74 = 4 

7.46 1 
+ 

1 7.46 (0.15) 
12 15 

t =  
4
 

1.15 
= 3.48 

Table value of t for V = n1 + n2 − 2 = 25 at 5% level of 

significance for 2 tailed tests is 2.064. 

t
7 > 

t 
0.05 

2 
v = 25 

i.e. 3.48 > 2.064 

 

Therefore Accept H1 and conclude that there is significant 
difference between the sample mean. 

 
iii) t - Test for difference of means with dependent samples 
(paired t - Test): 

This test is applicable when two samples are dependent. 
Following are the conditions to apply this test : 

⇒ Two samples should be of equal size n1 = n2 

⇒ Sample observations of X and Y are dependent in pairs. 
The formula for paired t - Test is 

 

t
* = 

d 

S 2 

n 

 ∑ d 1 
⎡ ⎛ ∑ d ⎞

2 ⎤ 
d = n 

i 
, S 2 = n −1 ⎢⎢∑ d 2 i 

⎝ n
 i ⎠ ⎥⎥ 

⎣ 
− ⎜ ⎜ ⎦ 

di → x − y ( x & y → sample observations) i.e. difference 

between each matched pair. 
 

Suppose, a test is conducted for 5 students in a coaching 
centre to know the subject knowledge of the students before and 
after tutoring for one month. 



 
  

S 2 

n 

d 

30 

5 

 

  
 

  

 

Students 1 2 3 4 5 

Results before test 110 120 123 132 125 

Result after test 120 118 125 126 121 

 
Is there any change in result after tutoring? 

 
Solution : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

d = 
n 5 

1 ⎛ ∑ d ⎞
2 ⎤ 

S 
2 = 

i 
– ⎢ 2 ⎝ i ⎠ ⎥ 

⎣ ⎜ ⎦ 
1  

⎡ (−10)2 ⎤ 

=  ⎢140 −  ⎥ 

5 −1 ⎢⎣ 

= 30 

5 ⎥⎦ 

H0 : μx = μy 

H1 : μx ≠ μy 

(mean score before and after tutoring are same) 

(mean score before & after tutoring are not same) 

 

t = = 
2
 = 0.816 

 

 

 
Table value of t at 5% level of significance (2 tailed test) for 

n −1 = v = 5 −1 = 4 is 2.776. 

t
* < 

t 
0.05 

 
 

2 
, v = 4 

i.e. 0.816 < 2.776 

X 

110 

Yi 

120 

 

- 10 

Y d 2 
i 

100 

120 118 2 4 

123 125 - 2 4 

132 136 - 4 16 

125 121 4 16 

  
   

  
 

i 

 
 

 

 



 
  

.8236 

 

Therefore H0  is accepted and conclude that there is no 

significant difference in score of the students after one month of 
tutoring. 

 
iv) t - Test for significance of an observed sample correlation 
coefficient: 

 
When r is a sample correlation & P is correlation for the 

population which is unknown, t - Test is applied to test the 
significance of correlation coefficient. 

 

t
* =  

r 

S.Er 

 

S.Er = 

 

Let us assume that a coefficient of correlation of sample of 
27 pair of observation is 0.42. Is it likely that variables in the 
population are not correlated? 

 
Solution : 
In our example, 

Let H0 : P = 0 (the variables in the population are 

uncorrelated) 

H1 : P ≠ 0 (variables in the population are correlated) 

 

 

t
* = 

  r  
= 

S.E.r 
 

t
* = 

 

t
* = 

 

 

0.42  
×

 

t
* = 2.315 

V = n − 2 = 25 

Table value of t for 25 degree of freedom is 2.06 

∴t
* > t0.25 for V = 25 

 

Therefore H1 is accepted & conclude that variables in the 

population are correlated. 

0.42 

1−  

27 − 2 

1− r2
 

n − 2 

r 

 

n − 2 

25 



 
  

1 2 

S 2 

 
 

  

 

 

 

 
 

4.5 F - TEST 

F statistic is ratio of two independents chisquare variate 

divided by their respective degree of freedom. Critical values of F 

test are based on right tailed test which depends on V1 (degree of 

freedom for numerator) and V2 

denominator) 

(degree of freedom for 

 

 

F (V1,V2 ) 
 

 

Where 
F - Test is used to test the equality of population variances. 
 

 

H0 :σ 2 = σ 2 = σ 2 (population variances are same) 

 
 
 

 
Where 

S 
2 

F = 1 = 
2 

 
S 

2 and 

Larger estimate of population variance 

Smaller estimate of population variance 

 
S 

2
 are unbiased estimates of common population 

1 2 

variance σ 2  and are gives by 

∑ X − X  ∑ Y − Y 
S 

2
 =   and S 

2
 =   

1 
n1 −1 

2 
n −1 

Where V1 = n1 −1 and V2 = n2 −1 . 

 
This test is also called variance ratio test 

2 ∑( X − X )
2 

2 ∑( X − X )
2
 

S1 = and S2 = 
n −1 n 

S 
2 (n −1) = ∑( X − X )

2
 

n − S 
2 ) = ∑( − )

2
 

1 1 

X X 
1 1 

R.H.S. are equal. Hence L.H.S. are also equal S 2 (n −1) = n S 2 

1 1 1 2 

 
Similarly we can find relation between S 

2
 and S 

2
 . 

2 2 

Assumption of F - Test 

⇒ Sample should be random 



 
  

1 2 

S2     

S2     

⇒ Sample observations should be independent 

⇒ Sample should be taken from normal population 

Let us discuss F-test with the help of the following example. 

Suppose Two samples gave the following results. 

Sample Size Mean Sum of the squares of deviation from mean 

1 10 15 90 

2 12 14 108 

 
Test the equality of sample variance. 

 
Solution : 

Let H0 :σ 2 = σ 2 (Difference in variances of two samples is not 

significant) 

Given n = 10, n = 12∑( X − X )
2 

− 90 ∑(Y − Y )
2

= 108 
1 2 

 

∑( X − X )2 
= 

90  
= 

90 
= 10 

1 
n1 −1 10 −1 9 

∑(Y − Y )2 
= 

108 
= 

108 
= 9.82 

2 
n2 −1 12 −1 11 

Apply F - Test, 

* S 
2 

10 
F =  1 = _____ = 1.02 

2 
2 

 

For V1 = n1 −1 = 9 

F0.05 = 2.90 

 

Since F
* < F.05 

9.82 

 

and V2 = n2 −1 = 11 

 

There H0 is accepted and conclude that there is no 

significant difference in the variance. 

S 



 
  

8 

n 

 

 
 

4.6 CHI-SQUARE TEST 

 
Properties of x

2
 distribution. 

 
1) Moment Ge

−
nerating function 1 x

2
 distribution is 

n/2 

μx2 (t ) = (1− 2t ) with parameters 

2) Mean of x
2
 distribution is „n‟. 

3) Variance of x
2
 distribution is „2n‟ 

n 
 and  . 

2 2 

4) Skewness of χ 2 distribution is γ1 = > 0 i.e. χ 2 distribution is 

positively skewed. But as 

becomes normal. 

n → ∞,γ1 → 0 , the distribution 

5) Kurtosis of 

Leptokurtic. 

χ 2 distribution is γ 2 = 
12 

> 0 
n 

i.e. χ 2 distribution is 

But as n → ∞,γ 2 → 0 , the distribution tends to Mesokurtic. 

6) χ 2 distribution tends to normal distribution n → ∞ . 

7) The sum of independent Chi-square variate is also a chi-square 
variate. 

Application of Chi-square distribution 
i) Goodness to fit : 

This test is used to test if the experimental results support a 
particular hypothesis or theory. 

 
Assuming Null hypothesis that there is no significant 

difference between the observed and expected frequencies. Chi- 

square distribution with V = n −1 degree of freedom. 

 

χ 2 = 
(Oi − Ei )2

 

Ei 

Where Oi → observed frequency 

Ei → expected or theoretical frequency. 

 

Steps to compute χ 2 test : - 

 

⇒ Consider null hypothesis H0 that the theory fits the data well. 

⇒ Compute the expected frequencies ( Ei ) corresponding to the 

observed frequencies (Oi ) 

⇒ Compute (Oi − Ei )2
 

under the considered hypothesis. 



 
  

 

⇒ Divide the square of the deviation (Oi − Ei )2 by the 

corresponding expected frequencies i.e. (Oi − Ei )2 Ei 

⇒ Add the values obtained in the above step to 
 

Calculate: 
2 

⎡ (Oi – Ei )2 ⎤ 

χ = ∑⎢ ⎥ 

⎣ 
Ei ⎥

⎦ 

⇒ Calculate degree of freedom i.e. V = n −1 

⇒ Find the table value of 

level of significance. 

χ 2 for n −1 degree of freedom at certain 

⇒ Compare the calculated value of χ 2 to the table value, if 

χ 2 < t0.05 then accept the null hypothesis and conclude that 

there is good fit between theory and experiment. 

⇒ If calculated value of χ 2 > t0.05 then reject the null hypothesis & 

conclude that the experiment does not support the theory. 

Chi-square test can be used under following condition : 

1) The sample observations should be independent. 

2) ∑Oi = ∑ Ei = N 
3) The total frequency N should be greater than 50 i.e. N > 50 
4) No expected frequency should be less than 5. If any expected 

cell frequency is less than 5 then we cannot use χ 2 test. In that 

case, we use pooling techniques where we add the frequencies 

which are less than 5 with succeeding or preceding frequency 

so that sum process more than 5 and adjust -  degree  of 
freedom accordingly. 

5) The given distribution should not be replaced by relative 
frequencies or proportions but the data should be given in 
original units. 

Let us discuss this with the help of an example. 
 

A sample analysis of examination results of 450 final year 
degree students was made. It is found in the analysis that 200 
students have failed, 160 have got pass class, 75 got second class 
and only 15 students have got first class. Find out whether these 
figures are consistent with the general final year degree 
examination result which is in the ratio of 4:2:2:1 for the above 
mentioned categories respectively. 



 
  

Solution : 

Assuming null hypothesis H0 that the figure are consistent 

with the general examination result. 

 

Category Observed 
frequency 

(Oi ) 

Expected 
frequencies 

(Ei ) 

(Oi − Ei )2
 (Oi − Ei )2

 
 

Ei 

Fail 200 180 400 2.22 

Pass 160 135 625 4.63 

Second 75 90 225 2.5 

First 15 45 900 20 

 
∑Oi = 450 ∑ Ei = 450 

 29.35 

 
Expected frequencies : 
Failed : 4 / 10 × 450 = 180 
Pass : 3 / 10 × 450 = 135 

Second : 2 / 10 × 450 = 90 

First : 1 / 10 × 450 = 45 

2 
⎡ (Oi − Ei )2 ⎤ 

χ = ∑⎢ 
⎣ 

Ei 

⎥ = 29.35 

⎥⎦ 

d.f. = 4 - 1 =3 
 

Table value of χ 2 

7.815. Since calculated χ 2 

χ 2 > t0.05 

29.35 > 7.815 

at 5% level of significance for df 3 = 

value is greater than the table value i.e. 

H0 is rejected at 5% level of significance and conclude that 

the figures are not consistent with the general final year degree 
examination result. 

ii) Chi - square test for independence of Attributes suppose the 

given population has N items, divided into „p‟ mutually disjoint and 

exhaustive classes. A1, A2,...........AP with respect to the attribute A. 

So that randomly selected item belongs to one and only one of the 

attributes A1, A2,..........AP . Similarly suppose the population is 

divided into „q‟ mutually disjoint and exhaustive B. So that randomly 

selected items posseses one and only one  of  the attributes 

B1, B2, Bq . The frequency distribution of the items belonging to 



 
  

 

the classes 

as ( p × q) . 

A1, A2,...........AP and B1, B2 ,..........Bq can be represented 

Steps for the test - 

⇒ Consider null hypothesis that two attributes A and B are 
independent. 

⇒ Compute the expected frequencies ( Ei ) Corresponding to the 

observed frequencies (Oi ) 
( Ai )(B j  ) 

Expected frequency for ( Ai Bj ) 
⎡i = 1, 2, ...... , p ⎤ 

F ( A B )i=j where ⎢ ⎥ 

n 

⇒ Computer (Oi ...... Ei )2 

⎣ j = 1, 2, ...... , q⎦ 

⇒ Divide the square of the deviations (Oi − Ei )2 by the 

corresponding expected frequency i.e. (Oi − Ei )2 Ei 

⇒ Add the valu
⎡ 
es obtaine

2 
d
⎤
 in the above step to calculate 

2 (Oi ....... Ei ) 
χ = ∑⎢ ⎥ 

⎣ Ei ⎥
⎦ 

⇒ Calculate degree of freedom = (r −1)(C −1) 
r = No. of rows C = No. of columns 

⇒ Compute the calculated value χ 2 with the table value for 

(r −1)(C −1) degree of freedom at certain level of significance. If 

the calculated value of χ 2 is greater than the table value of χ 2 

the null hypothesis is accepted and vice versa. 
 

Let us discuss this with the help of following example. 
 

The following data on vaccination is collected in a 
government hospital to find out whether vaccination reduces the 
severity of attack of influenza. 

 
Degree of Severity 

 

Very Severe Severe Mild 

Vaccinated 10 150 240 

Not Vaccinated 60 30 10 

 

Use χ 2 - test, to test the association between the attributes. 



 
  

Solution : 

 

 Observed frequencies 

 Very Severe Severe Mild Total 

Vaccinated 10 150 240 400 

Not Vaccinated 60 30 10 100 

Total 70 180 250 N = 500 

 
Assume the null hypothesis that the two attributes are 

independent i.e. Vaccine is not effective in controlling the severity 
of attack of influenza. The expected frequencies are as follows : 

Expected Frequencies 

 

 Degree of Severity 

 Very Severe Severe Mild Total 

Vaccinated 70 × 400 180 × 400 250 × 400 400 

500 500 500 

= 56 = 144 = 200 

Not Vaccinated 70 - 56 = 14 180 - 144 250 - 200 100 

= 36 = 50 

Total 70 180 250 N = 
500 

Compution of Chi square 

Oi Ei (Oi − Ei )2
 (Oi − Ei )

2 
Ei 

10 56 2116 37.786 

60 14 2116 151.143 

150 144 36 0.25 

30 36 36 1 

240 200 1600 8 

10 50 1600 32 

∑Oi = 500 ∑ Ei = 500 
500 230.179 

d. f = (r −1)(c −1) 

= (2 −1)(3 −1) = 1× 2 = 2 



 
  

n 

Table value of χ 2 for 2 d.f. at 5% level of significance is 5.99 

Computed value of χ 2 is greater than the table value of χ 2 , 

it is highly significant and hence the null hypothesis the rejected. 
Hence we conclude that both attributes are not independent ant 
vaccination helps to reduce the severity of attack of influenza. 

 

iii) χ 2 - test for the population variance 

To test if the given normal population has a specified 

variance σ 2 −σ 2 , we assume the null hypothesis. 

H0 :σ 2 = σ 2 
0 

 

If X1, X 2 , X3,...... , Xn is a random sample of size „n‟ from the 

given population, then under the null hypothesis H0 , the statistic 
 

χ 2 = 
ns2 

= 
σ 2 

∑( X − X )2 

follows χ 2 

σ 2 

 

distribution with (n −1) 
0 0 

∑( X − X )
2
 

d.f. where S 2 = i=1 
 

n 
denotes the sample variance. 

 

By comparing the calculated value of χ 2 with the table value 

for (n −1) d.f. at certain level of significance null hypothesis can be 

accepted or rejected. 

 
Let us discuss this with the help of following example. 

 
Weight in kgs. Of 10 members in a Gym are given below : 
36, 40, 45, 55, 47, 44, 56, 48, 53, 46 

Can it be said that population variance is 20 square kg? 
 

Solution : 

Assume null hypothesis H0 :σ 2
 = 20 against the alternative 

hypothesis H1 :σ 2 > 20 

 

Weight (in kg) ( X1) ( Xi − X ) 
( Xi − X ) 

2 

36 - 11 121 

40 - 7 49 



 
  

 

45 - 2 4 

55 8 64 

47 - 0 0 

44 - 3 9 

56 9 81 

48 1 1 

53 6 36 

46 - 1 1 ∑( X − X ) = 366 

∑ X = 470 
 i 2 

 

X = 
∑ X

 

n 

= 
470 

= 47 

10 



 
  

0 

S 2 = ∑( Xi – X )
2
 

m 

nS 
2 = ∑( X i− X )

2 
= 366 

χ 2 = 
nS 

2 

= 
366 

=
 

σ 
2 20 

18.3 

 

Degree of freedom = n −1 = 10 −1 = 9 

Table value of χ 2  for 9 .d.f. at 5% level of significance is 

16.92. 

 

Since calculated χ 2 is greater than table value of χ 2 at 5% 

level of significance, null hypothesis is rejected and conclude that 
the population variance is not 20 sq.km. 

 

4.0  KEY WORDS  
Parametric Tests- Parametric tests are statistical methods that 
make certain assumptions about the population parameters from 
which the samples are drawn. These assumptions typically involve 
the distribution of the data. The key assumption is that the data 
follows a specific probability distribution (commonly the normal 
distribution), and this assumption allows for more powerful 
statistical tests. 
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UNIT-V ESTIMATED LINEAR REGRESSION 
EQUATION AND PROPERTIES OF 
ESTIMATORS 

Unit Structure: 

 
5.0 Objectives 

5.1 Introduction 

5.2 The Estimated Linear Regression Equation 

5.3 Properties of estimators 

5.4 References 
 

5.0 OBJECTIVES 
 

• To understand the concepts of simple linear regression model. 

• To understand the various test in regression. 
 

5.1 INTRODUCTION 
 

Linear regression models are used to predict the relationship 
between two variables. The factors which is being predicted is 
called the dependent variable and the factors which are used to 
predict the value of the dependent variable are called the 
independent variables. So in this simple linear regression model, a 
straight line approximates the relationship between the dependent 
variable and the independent variable. 

 
Assuming the two factors that are involved in simple linear 

regression analysis are X and Y then the equation that describes 
how Y is related to X is represented in the following formula for a 
simple Linear Regression Model. 

Y = β0 + β X + μ 

Where, β0 and β1 , are parameters 

 
This equation contains an error term which is represented by 

μ . It is used to account for the variability in Y that cannot be 

explained by the linear relationship between X and Y. 



 
  

For e.g. In economic theory, Consumption (C) is determined 
by income (Y) 

∴C = f (Y ) = β0 + β0Y 

 

Here we assume that consumption depends only on income 
(other determinants of consumption taken to be constant). But in 
real world such exact relationship between C and Y never exists. 

Therefore we add „ μ ‟ an error term in the equation where μ 

is a random variable called residual error. The error arises from the 

measurement errors in Y or imperfections in the specification of the 

function f (Y ) . 
 

So the standard form of the simple linear regression model is 

Yi = f ( Xi ) + μi ............................................. (1) 

Yi = β0 + β1Xi + μi ............................................. (2) 

 

where Yi → dependent variable 

Xi →explanatory or independent variable 

β1 → slope parameter 

β0 → intercept 

 
It is based on the assumption that 

a) the relationship between X & Y is linear 

b) Assumption about the random disturbance ( μ ). 

 
A regression line can show a positive linear relationship, a 

negative linear relationship and no relationship. 

 
i) No relationship - The line in the graph in a simple linear 

regression is flat (not sloped). There is no relationship between 
the two variables. 

ii) Positive relationship - Exists when the regression line slopes 
upward with the lower end of the line at the y-intercept (axis) of 
the graph and the upper end of the line extending upward into 
the graph, away from the X-intercept (axis). There is a positive 
linear relationship between the two variables representing that 
as the value of one variable increases, the value of the other 
also increases. 

iii) Negative relationship - The regression line slopes downwards 
with the upper end of the line at the y-intercept (axis) of the 
graph and the lower end of the line extending downward into the 
graph field, toward the X intercept (axis). There is a negative 



 
  

linear relationship between the two variables i.e. as the value of 
one variable increases, the value of the other decreases. 

 

5.2 THE ESTIMATED LINEAR REGRESSION 
EQUATION 

 

If the parameters of the population were unknown, the 
simple linear regression equation could be used to compute the 
mean value of y for a known value of X. 

E (Y ) = β0 + β1X + μ 

In practice, however parameter values are generally 
unknown so they must be estimated by using data from a sample of 
the population. The population parameters are estimated by using 

sample statistics. They are represented by β0 and β1 when these 

sample statistics are substituted for the population parameters, the 
estimated regression equation is formed as following. 

(Yˆ) = β0 + β1X + μ 

(note (Yˆ) is pronounced y hat) 

The graph of the estimated simple regression equation is 
called the estimated regression line. 

where β0 → y-intercept of the regression line. 

β1 → slope 

(Yˆ) → estimated value of y for a given value of X. 

 

5.3 PROPERTIES OF ESTIMATORS 
 

There are different econometric methods with the help of 
which estimates of the parameters are obtained. We have to 
choose a good estimator which is close to the population 
parameter. This closeness is determined on the basis of following 
properties. 

A) Estimator Properties for small sample are : 
i) Unbiased : 

The bias of an estimator is defined as the difference 
between its expected value and the true parameter. 

Bias = E (βˆ) − β 



 
  

   
 

 

If bias is O, an estimator is said to be unbiased i.e. E (βˆ) = β 

A biased and an unbiased estimator of the true β is 

explained in the following figure. 

Figure No. 3.1 
 

 
Unbiasedness is a desirable property and becomes 

important only when it is combined with a small variance. 

ii) Least Variance: 
An estimator is best when it has the smallest variance as 

compared with any other estimate obtained from other econometric 

methods. Symbolically, βˆ is best if. 

E ⎡βˆ − E (βˆ)⎤
2 

< E ⎡β * − E (β * )⎤
2

 

⎣ ⎦ ⎣ ⎦ 

var (βˆ) < var (β * ) 

where β * → any other estimate of the true parameter β . 

 
iii) Efficiency : 

An estimator is efficient when it possesses the various 
properties as compared with any other unbiased estimator. 

βˆ is efficient if 

E βˆ = β and E ⎡βˆ − E βˆ ⎤ < E ⎡β * − E (β * )⎤ 
⎣ ⎦ ⎣ ⎦ 

iv) Best, Linear Unbiased Estinator (BLUE) : 

An estimator βˆ  is BLU if it is linear, unbiased and has 

smallest variance as compared with all the other linear unbiased 
estimator of the true β . 



 
  

 

 

 

v) Least mean square Error estimator (LMSE): 
An estimator is a minimum / least MSE if it has the smallest 

mean square error defined as the expected value of the squared 

difference of the estimator around the true population parameter β . 

MSE (βˆ) = E (βˆ − β )
2

 

 

vi) Sufficiency: 
An estimator is said to be sufficient estimator that utilise all 

the information a sample contains about the true parameter. It must 
use all the observations of the sample. Arithmetic mean (A.M.) is 
sufficient estimator because it give more information than any other 
measures. 

B) Estimator Properties for Large Sample: 
They are required when the sample is infinitely large. These 

properties therefore are also called as asymptotic 

i) Asymptotic Unbaisedness : 
An estimator is an asymptotically unbiased estimator of the 

true population parameter β , if the asymptotic mean of βˆ 

to β . 

is equal 

 

limit E β  ̂
n→∞ 

)= β 

Asymptotic bias is an estimator is the difference between its 
asymptotic mean and true parameter. 

(Asymptotic bias of βˆ ) = ( l imn →i∞t  E (βˆ)) − β 

If an estimator is unbiased in small samples it is also 
asymptotically unbiased. 

ii) Consistency : 

An estimator βˆ is said to be consistent estimator of the true 

population of β if it satisfies two conditions. 

 
a) βˆ must be asymptotically unbiased 

limit E β  ̂
n→∞ 

)= β 

b) the variance of βˆ must approach zero as n tends to infinity. 

limit Varianceβ  ̂
n→∞ 

)= 0 



 
  

2 2 
(  = 

 
If the variance is zero, the distribution collapses on the value 

of the true population parameter β . Both the bias and variance 

should decrease as n increases. 
 

iii) Asymptotic Efficiency: 

An estimator βˆ is said to be asymptotically efficient 

estimator of the true population parameter, if : 

a) β̂ 

b) β̂ 

is consistent and 

has smaller asymptotic variance as compared with any other 

consistent estimator. 
 

Statistical properties of Least Square Estimators : 
Least square estimators are BLUE i.e. Best, Linear and Unbiased 
estimator provided error term Ui satisfies some assumption. The 
BLU properties of OLS (Ordinary Least Square) estimators are also 
called Gauss Markov. 

 
Theorem : 

The BLU properties are shown in the following diagram. 
 

Figure No. 3.2 

 

 
The properties  of  the  OLS  estimates  of  simple  linear 

regression of the equation 

following assumptions : 

1) Ui is a random real variable. 

Yi = β0 + β1Xi + Ui is based on the 

 

2) The mean value of U in any particular period is zero. i.e. Ui = O 

i.e. E (Ui ) = O 

3) Assumption of Homo  - scedasficity  : i.e.  the probability 
distribution of U remains the same over all observations of X. i.e. 
Variance of Ui is constant i.e. E U constant. 

i U 



 
  

1 

 

  

1 

   

 

4) The random terms of different observation of Ui are 

independent. i.e. E (Ui ,U j ) = O 

 

5) X‟s are assumed to be fixed. 
 

In a group of linear, unbiased estimators the OLS estimator. 

βˆ has smallest variance i.e. they are best. 
 

1) Linearity : The OLS estimators βˆ and βˆ , are linear functions 
0 1 

of the observed values of Yi . Given the assumption that X‟s appear 

always with same values in repeated sampling process. 

βˆ = ∑ xi yi 

∑ xi 

Where, x & y are in deviation form i.e. x = X − X yi = Y − Y 
 

Let 
xi 

xi 

= Ki 

βˆ1 = ∑ki yi 

 

Put the value of yi = Yi − Y 

βˆ
1 = ∑ki (Yi − Y ) = ∑kiYi − Y ∑ki ……… (1) 

∑ xi ∑( Xi − X ) =  O  
= O 

But k =i 2 = 2 
i i ∑ x2 

i 

Q ∑( Xi − X ) = O 

Put the value of ∑ki in equation (1) we get 

βˆ
1 = ∑kiYi − O = ∑kiYi (Yi − Y ) = ∑kiYi − Y ∑ki ……… (2) 

Where kiYi = k1Y1 + k2Y2 + − − − − − + knYn 

This implies that βˆ is a linear function of Yi . Because 
ki depends upon X 

1
 and X 

1
 are assumed to be fixed. 

s s 

 

Similarly βˆ0 = Y − β , X 

1 



 
  

1 

0 1 

 

i 

  k Y 

n 

 

Putting the value of βˆ from equation (2) 

 

0 

   

 ∑ i i

 

βˆ = Y − β , X = Y − 

= 
∑Y

i − X ∑k Y 

 
 

k Y X 

β̂  = ∑ 
i i 

⎡ 1 
− X

 
k 

⎤
Y .................. (3) 

0 

 

 

 
Thus both 

⎢⎣n 

βˆ and 

i ⎥⎦ 
i 

 

βˆ are the linear functions of the Y 
1
 . 

0 1 s 

 

2) Unbiased: Both βˆ and β̂ are unbiased estimators. 

i.e. ∑(βˆ )1= β1 and ∑(βˆ 0 ) = β0 

 

1 ∑ i i ..................................... 

 

 

 

 

Q k = 

= ∑ki (β0 + β1Xi + Ui ) 

= = β0 ∑ki + β1 ∑ki Xi + ∑kiUi 

xi 

 

…………..  (4) 

 
i 

∑k = 
i 

 
 

2i 

i 
Q ⎡∑ x = ∑( X − X ) = 0⎤ 

 

 

∑ki 

∑ x2i 

=
 0  

∑ X 2i 

⎣ i ⎦ 

∑ki = 0 

∑ki Xi 

= 
∑ xi 

X 
 

∑ x2 i i 

Putting the value of Xi = xi + X 

 

∑ki Xi ∑ xi (xi + X ) = ∑ x2 

+ X ∑ xi 

 

 

 

 

 

∑ki X i = 1 

∑ X 2 

 
 

∑ x2 

i 

= 1 +
 X (0) 

∑ x2i 

∴∑ xi = 0 

∑ x2 

Substituting the value ∑ki = 0, ∑ki Xi = 1 in equation (4) 

  

Proof : (From 2) 

 



 
  

1 

  

 

  

   

    
 ̂

 
 

 

 

1β
ˆ= β0 (0) + β 1(1) + ∑k Ui i 

1
βˆ= β1 + ∑k Ui  i ................................................................ (5) 

Take expectations on both sides. 

E (βˆ1 ) = β1 + ∑ki E (Ui ) 

Q E (Ui ) = 0 

E (β  ̂)1 = β 1 

This is known as unbiasedness of the estimated parameter. Thus 

βˆ is an unbiased estimator of β1 . 

It is known that βˆ from OLS is 

βˆ  = 
⎡ 1 

− 
0   

   ⎤ Y......................... (from 3) 
0 ⎢⎣n i ⎥⎦ 

i 

= ∑⎡ 1 
− Xk 

⎤ (β + β X + U ) 
⎢⎣n 

i⎥⎦ 
0 1  i i 

= β + β 
X

i  + 
U

i − X ∑k β – β X ∑k X – X ∑k U ................. (6) 
0 1 n n i  0 1 i i i i 

It is proved that ∑ki = 0, ∑ki Xi = 1 
By substituting these values in equation (6) 

β̂  = β + 
U

i − X ∑k U 
0 0 n i i 

Taking expectation on both sides 

E (βˆ ) = β + 
E Ui  

− X ∑k E (U ) 
0 0 n i i 

Q E (Ui ) = 0 

E (βˆ )0 = β 0 

This implies that βˆ is an unbiased estimator of β . 
0 0 

 

3) Minimum variance prop2erty: 

Var βˆ = E ⎡βˆ − E βˆ ⎤ 

1 ⎣ 1 

= E ⎡β – β ⎤ 
2

1 ⎦ 
Q E (βˆ ) = β 

⎣ 1 1 ⎦ 1 1 

= E k U since βˆ = β + = k U 
i  i 1 1 

= E k U + k U +.......... + k U 
1  1 2  2 n  n 

i  i 
2 ................... 

(see equation 5)  



 
  

1 i u 

i i 

i 

 

 

u ⎜ 2 i i ⎟ 

 

  

 

i 
i 

 
 ⎤ 

 

i 
 

    
   

   – 2    

 

i 

= E (k 
2
U 

2
 + k 

2
U 

2
 + ........ + k 

2
U 

2
 + 2k k U U + ...... + 2k kU U ) 

= E 
⎛
 

1  1 2  2 

k 
2
U 

2
 + 2 

n  n 1 2  1  2 n−1 n−1  n 

⎞ 
⎜ ∑ k

i
k U U 

j ⎟
 

i i ∑ j i 

i ≠ j 

= ∑k 
2
E (U 

2
 ) + 2∑k ki Ej(U U i ) j 

Since E (U ,U ) = 0, E (U 2 ) = σ 2  
(Assumption) 

i j i u 

Var (βˆ ) = ∑K 
2σ 2 

Var (βˆ ) = σ 2 ∑K 
2
 

 

Q K 
2
 = 

 

xi 

∑ x2i 

1 u i 

∑ K 
2
 = 

x2 

x2 

=   1  
2 

(∑ i ) i 

∴Var (βˆ ) = 
1 ∑⎡

 

2 
u 

 
x2i 

2 ⎤
 

∴Var (βˆ ) = E (βˆ − β ) 
0 ⎢⎣ 0 0 ⎥⎦ = 

⎡ ⎛ 1   ⎞2
 2 ⎤ 

E ⎢∑⎜  − XK
i ⎟ U i ⎥ 

⎢⎣ ⎝ n ⎠ ⎥⎦ 

= σ 2 ∑ ⎛ 1 – XK 
⎞ 2

 
i 

u
 

⎜
⎝n ⎠ 

= σ 2 ∑
⎛ 1 

− 
2 

XK + X 
2
K 

2
 
⎞
 

n n 

Since ∑k = 0∑k 
2
 

⎝ 
  1  

⎠ 

Var (βˆ ) = σ 2 
⎛
 

i 

 ∑ x2i
 1 

+ X 
2  ⎞⎟ .............. (8) 

0 u ⎜⎜  2 ⎟ 
⎝ i ⎠ 

1 X 
2 

x2 + n X 
2 ⎡ ∑( X – X )

2 

+ n X 
2 ⎤ 

Now + 
= 

∑ i = σ 2 ⎢ 
⎢ 

i  

∑ 
⎥ 

⎣ 

⎡ ∑ 2   
2 

∑  2 ⎤ 
⎦ 

= σ 2 ⎢ 
u 
⎢⎣
 

i i ⎥ 
n x

2
i ⎥ 

⎡ ∑ x2
 + 2n X 

2

 
2 ⎦ 

2n X  
= σ 2 ⎢ ⎥ 

u
 ⎢⎣ n∑ x2

 ⎥ 
i ⎦ 

 

i 

  



 
  

1 

1 1 

1 1 

1 1 2 2 n n i j  i j 

Var (βˆ ) = σ 2 ∑ 2 

 x i  

0 u 
n∑ x2 i 

We are interested in the least square estimators which have 
the smallest variance. 

 

Let β *
 be another estimator of β1 . 

β * = ∑WY where constant W ≠ K but W = K + C 
i i 

 

∴ β * = ∑W (β + β X 

i i 

 

+ U ) 

i i i 

1 i 0 1  i i 

= β0 ∑W 
i 
+ β1∑W 

i 
Xi + ∑W Ui i 

∴ E (β * )1 = β ∑0 W + iβ ∑ W1  X i i 

⎡⎣Q E (Ui ) = 0⎤⎦ Assumption. 

E (β * ) = β if and only if 

∑W 
i 
= 0 and ∑W 

i 
Xi = 1 

∑W 
i 
= ∑( Ki + Ci ) = ∑ Ki + ∑Ci = 0 

But ∑ Ki = 0 

∑Wi = 0 + ∑Ci = 0 

Hence ∑Ci = 0 and ∑Wi = 0 

∑Wi Xi = ∑(Ki + Ci ) Xi = 1 

= ∑ Ki X i + ∑Ci X i = 1 

But ∑ Ki Xi =1 

1 + ∑Ci X i = 1 

∑Ci Xi = 1 −1 = 0 

Hence ∑Ci = 0 and ∑Ci Xi = 0 

Var β * = E ⎡β * − E (β * )⎤
2

 

1 ⎣ 1 1 ⎦ 

= E (β * − β )
2

 

Var β * = E ∑(WU )
2 

Q β * = β + WU 

1 i  i 1 1 ∑ i  i 

= E (W 
2
U 

2
 + W 

2
U 

2
 + ...... + W 

2
U 

2
 + 2∑WW U U )

2

 



 
  

 

i i 

 
w 

 

0 

0  n i ⎟ i i i 0 0 i 

        

i i i i i 

i 

Var β * = E (W 
2
U 

2
 + 2 WW U U ) 

1 i i i j  i j 

= ∑W 
2
E (U 

2
 ) + 2∑WWi Ej (U Ui ) j 

Since EU U = 0,∈(U 
2
 ) = σ 2 (Assumptions) 

i j 1 u 

Var β * 
1= σ 2 ∑u w

2
 +i 0 

 
Putting the values of 2

 

Var β * = σ 2 (k + C )
2

 

1 u i i 

Var β *1 = σ 2 u(2∑k 
2
 +i 

* 

∑C 
2
 +i 2∑k C )i  i 

2 2 

Var β1 = u + σ u ∑Ci + 0 
 

∑ x2i 

Q ∑kiCi = 0 

Var β * = βˆ + constant Q ∑ C
2 

> 0 
1 1 i 

Var β * > βˆ 
1 1 

It implies that OLS estimator has the minimum variance. 

Similarly, let us take a new estimator β * , which is assumed 

to be a linear function of the Yi 

wi = ki + Ci 

and unbiased. 

Let β * = ∑⎛ 1 
− Xw 

⎞ 
Y where w ≠ k ∈(β * ) = β * only if ∑w = 0 

⎝ ⎠ 

and ∑wi Xi z . 

It implies that 
⎛ 1 

 

 

∑Ci = 0 
  ⎞ 

 

 

and ∑Ci Xi = 0 

Var (β * ) = σ 2 ∑ − Xw 
2 1 n 2 X ∑wi 

= σ + Xw − 
u 

⎢⎣ n 
i 

 
 

 ⎥ 
n ⎥⎦ 

= σ 2 
⎡ 1 

+ X 
2 

(∑k 
2
 + ∑C

2
 )⎤ 

Q ∑ w = 0 

u ⎢⎣n i i  ⎥⎦
 

 

Since ∑w
2 

= ∑k 
2 

+ ∑C 
2 

+ 2k C 

But ∑k Ci i = 0∑w
2

i = ∑ K 
2
 1+ kC 

2
 1 

2 



 
  

  

 
 

  

0 0 

= σ 2 
⎡ 1 

+ X 
2 ⎛  1 

+ C 
2
 
⎞⎤
 

u ⎢ 
n  ⎜ ∑ x2 ∑ i ⎟⎥ 

 

= σ 2 
⎡ 
⎢⎣ 
1 

+
 

⎢  

⎝ i 

X 
2 ⎤⎥ + σ 2 X2

 

⎠⎥⎦ 

∑C2 

u
 ⎢⎣n ∑ X 2

i⎦⎥ 

Var (β * ) = Var (βˆ ) + a positive constants 

∴Var (β * )0 > Var (βˆ ) 0 

 

Thus it is proved that the OLS estimators are BLU. 

The standard error test of the estimators β0 and β1 . 

 
The least square estimates are obtained from a sample of 

observations. So sampling errors are inevitable to occur in all 
estimates. Therefore to measure the size of the error it becomes 
necessary to apply test of significance. Let us discuss the standard 
error test. It helps us to decide whether the estimates are 
statistically reliable or not. To test the null hypothesis. 

 

 
 
 

 
where 

H0 : β1 = 0 

 

H1 : β1 ≠ 0 

against the alternative hypothesis. 

S ∈(βˆ )1 = = 

 ̂   

S ∈ (β0  ) = = 

 When the standard error i
⎡
s less tha

1
n ha

⎤ 
lf of the numerical value of 

the parameter estimate S ∈ (βˆ ) < (βˆ ) , we conclude that the 

⎣⎢ 
1 2 1 ⎥⎦

 

estimate is statistically significant. Therefore we reject the hull 
hypothesis & accept the alternative hypothesis i.e. the true 

population parameter β1 is different from zero. 

 If the standard error is grea
⎡  
ter than

1
half

⎤ 
of the numerical 

value of the parameter estimate S ∈ (βˆ ) > (βˆ ) , we conclude 

⎣⎢ 
1 2 1 ⎥⎦

 

that the null hypothesis is accepted and the estimate is not 
statistically significant. 

 
  
4 

x2 

i 

σ X 2 

4  2 

i 

n x  2 

i 

u i 



 
  

The acceptance of null hypothesis implies the explanatory 
variable to which the estimate relates does not effect the dependent 
variable. i.e. there is no relationship between Y and X variables. 

 

5.4 KEY WORDS  
Asymptotic efficiency - Asymptotic efficiency is a concept in statistics that 
refers to the behavior of an estimator as the sample size becomes infinitely 
large. In other words, it describes the long-term performance of an 
estimator when the amount of available data approaches infinity. 
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UNIT- VI TESTS IN REGRESSION AND 

INTERPRETING REGRESSION 
COEFFICIENTS 

Unit Structure: 

 
6.0 Objectives 

6.1 Introduction 

6.2 Z - Test 

6.3 t - Test 

6.4 Goodness of fit (R
2
 ) 

6.5 Adjusted R squared 

6.6 The F-test in regression 

6.7 Interpreting Regression Coefficients 

6.8 Questions 

6.9 References 
 

6.0 OBJECTIVES 
 

• To understand the meaning of adjusted R squared. 

• To use the F- test in regression. 

• To interpret the regression coefficients. 
 

6.1 INTRODUCTION 
 

Regression coefficients are a statistical tool or measure of 
the average functional relationship between two or more than two 
variables. In the regression analysis, one variable is dependent and 
other variables are independent. In short, it measures the degree of 
dependence of one variable on another variable. 

Regression coefficient was used first to estimate the 
relationship between the heights of father‟s and their sons. 
Regression coefficient denoted by b. 

 

6.2 Z - TEST: 
 

The Z test of the least squares estimates is based on 
standard normal distribution and is applicable when the population 
variance is known or the population variance is unknown if the 

sample is sufficiently large i.e. n > 30 . 



 
  

   
2 

u 
n x ∑ 2 

i 

 

( ) 
  u 

( ) 

1 u 

 

Assuming The null hypothesis 

Alternative hypothesis 

H0 : β = 0 

H1 : β ≠ 0 Then the least square 

estimates βˆ and βˆ have the following normal distribution. 

 
 ̂

β0 : 

0 1 

 

⎡ ⎤ 
N β0,σ βˆ = 

⎢ 0 

⎦
 

βˆ : N ⎡ β ,σ = 1 
⎤ 

1 ⎢ 1  ̂ 2  ⎥ 
β 

⎣⎢ 
1 

σ u ∑ x2 

⎥⎦
 

After transforming it into Z : N (0,1) 
 

Z  = 
X i − μ 

:
 

i σ 
N (0,1) 

Xi → value of the variable which is to be normalise 

μ → mean of the distribution 

σ → standard deviation 

* βˆ − β βˆ − β 

Z =  0 0 = 0 0 :  N 0,1 

β 0 σ 2 ∑ x /in∑ x2
 i 

* βˆ − β βˆ − β 

Z =  1 1 = 1 1 :  N 0,1 

σ βˆ σ 2 /n∑ x2
 i 

Given the calculated value of Z 
*
 , we select the level of 

significance to decide the acceptance or rejection of null 
hypothesis. Generally speaking, in econometrics we choose 5% or 
1% level of significance. i.e. we tolerate / consider 5 times out of 
100 to be wrong while making decisions. 

 
We perform a two tail test i.e. critical region for both tails of 

standard normal distribution. For i.e. for 5% level of significance, 
each tail will include area 0.25 probability. The table value of Z 
corresponding to probability 0.25 at each end of the curve or both 

the tails is Z1 = −1.96 and Z2 = 1.96 

 

To conclude we compare the observed value Z 
*
 with the 

table value of Z. If it falls in the critical regions. i.e. if  Z 
*
 > 1.96 or 

Z 
*
 < −1.96 , we reject the hull hypothesis. In case if it is outside of 

the critical region, i.e. 
hypothesis. 

−1.96 < Z 
*
 < 1.96 , we accept  the  hull 

 



 
  

S 
2
 / n X 

   

1 

1 2 

X 

X 

( ) 

X 

X 

in econometrics, it is customarily to test the hypothesis that 
true population parameter is zero. 

 

H0 : β1 = 0 

 

H1 : β1 ≠ 0 . 

and is tested against the alternative hypothesis. 

 

To test the above null hypothesis, 

formula. 

β = 0 in the Z transformed 

* βˆ − β βˆ −0 βˆ 

Z =  1 1 =  1 = 1  

σ ̂ σ ̂ σ ̂ 
1 1 1 

 

 

If Z 
*
 > 1.96 we accept H1 and reject H0 . 

Given the 5% level of significance the critical value of Z is 
1.96 which is approximately e

β
qual to 2.0. In standard error test we 

reject null hypothesis if σ > 
1
 . In case of 2 test it Z 

*
 > 2 we reject 

β  ̂
2 

null hypothesis. The two statements are identical because 

Z 
*
 => 

β 1̂ > 2 

σ  ̂
1 

βˆ 
(if we accept H1 ) or σ ˆβ >  1 . 

 
Thus standard error test and 2 tests give the same result. 

 

6.3  T TEST -  
 

t Test includes the variance estimates 

variance σ 2 . So the formula is as following : 

t = 
Xi − u 

with (n - 1) degrees of freedom 
SX 

u → value of population mean 

S 
2 → sample estimate of the population variance 

S 
2
 → ∑ X − X 

2
 / (n − 1) n → sample size. 

S 
2
  instead of true 

X i 

 

The sampling distribution in X : N (u, S 
2
 ) and the 

transformation statistic is ( X − u) / and has t distribution 

with (n −1) degrees of freedom. 

 
We have least square estimates as : 

 



 
  

 
1 

= 0 

σˆβ 
0  and t = with n k degrees 

0 

1 

0 

 ̂ ⎡ ∑ X 
2
 ⎤  ̂ ⎡ 1 ⎤ 

β 0: N ⎢β ,σˆ0 
2
 u  

i
 ⎥ and β 1: N ⎢β ,σˆ 

2
 =βˆσˆ 

2
  ⎥ 

⎣⎢ n∑ X 2 

⎥i ⎦ ⎣⎢ 
1 1

 u ∑ X 2
i

⎥ 
⎦ 

From this the t statistic for βˆ and βˆ are obtained from a 

βˆ – β * 
0 1 

βˆ – β * 
* 

sample reduces to t 

 

of freedom. 

  
* 

 1 1  

 ̂
0 

βˆ and βˆ → least squares estimates of β0 and β1 respectively. 
0 1 

 

β * and β * → hypothesised value of β0 and β . 
0 

 

σˆ
2
 

β̂ 0 

σˆ
2
 

β̂1 

1 

 

→ estimated variance of 

→ estimated variance of 

 

β0 (from the regression) 

β1 

n → sample size 

K → total number of estimated parameters 

(in oure case of K = 2) 

Assuming The null hypothesis is H0 : β0 = 0 

The alternative hypothesis H1 : β0 ≠ 0 
 

 

t
*
 = 

 ̂
0 

S ∈ˆ 
0 

 

Then the calculated t
*
 value is compared to the table values 

of t with n - K degrees of freedom. 

If t
*
 > t0.025 , we reject the null hypothesis, i.e. we accept that 

the estimate βˆ is statistically significant. 

 

When t
*
 > t0.025 , we accept the null hypothesis, that is, the 

estimate  ̂ is not statistically significant at the 5% level of 

significance. 

Similarly for the estimate βˆ . 
 

Null hypothesis 

H1 : β1 = 0 

H0 : β1 = 0 and Alternative hypothesis 

 

 

 



 
  

0.025 

1 

0.025 

1 

0 
 

0 

  

1 

1 

1 1 

(β ) 

 

 

t
*
 = 

 ̂
1 

 

S ∈ˆ 
1 

 

If t * > t we reject the null hypothesis and we conclude that 

the estimate βˆ is statistically significant at 5% level of significance. 

 

If t
*
 > t we accept the null hypothesis that is, we conclude 

that the estimate 

significance. 

βˆ is not statistically significant at 5% level of 

 

Confidence intervals for βˆ and  ̂
 

 

The t statistic for 

 

βˆ is 
βˆ – β * 

t =  0 0  

S ∈(βˆ ) 

 

with n - k degrees of freedom. 

First we choose the 95 percent confidence level or and find t values 
of ±t0.025  from t table with n - K degrees of freedom. This implies 

that the probability of t lying between −t0.02 

5 

and +t0.025 is 0.95. 

 
Thus the 95 percent confident interval for β0 , small sample 

for its estimation is βˆ −t S ∈ < β < βˆ + t S ∈ with n - K 
0 0.025 (βˆ0) 0 0 0.025 (βˆ0) 

degrees of freedom or β0 < βˆ + t S ∈ with n - K degrees of 
0 0.025  ̂

0 

freedom. 

 
Similarly, for the estimates of 

 

 

βˆ , t
*
 = 

 

βˆ − β 

S ∈(βˆ) 

 

 

with n - K degrees of 

freedom. 

 
The confidence interval 95 percent level is 

 

βˆ −t 

 

 

 

 

0.025 

S ∈(βˆ) < β1< βˆ 1 + t0.025S ∈(β ˆ) with  n  -  K  degrees  of  freedom  or 

β1 = βˆ ± t S ∈ with n - k degrees of freedom. 
1 0.025  ̂

1 

 

6.4 GOODNESS OF FIT (R
2
 ) 

A measure of goodness of fit is the square of the correlation 

coefficient (R
2
 ) , which shows the percentage of the total variation 

of the dependent variable that can be explained by the independent 
variable (X). 

 

0 

 

1 

* 



 
  

   

 

 

Since, 
TSS = RSS + ESS 

 
TSS → Total sum of squares = ∑ y2i 

RSS → Residual sum of squares = 

ESS →Explained sum of squares = βˆ ∑ x2
 and y = Y − Y  and 

 

x = Xi − X . 

 
The decomposition of the total variations in Y leads to a 

measure of goodness of fit, also called the coefficient of 
determination which is represented by : 

 

R
2 = 

ESS 

TSS 

2 βˆ2 ∑ x2 

1 i 

∑ y2 i 

As ESS = TSS − RSS 

R
2 = 

TSS − RSS 

TSS 

∑ y2
 − ∑e

2
 

∴ R2
 = i i 

∑ y2 i 

= 1 − ∑e2i
 

∑ y2i 

Properties of R
2
 

 

i) It is a non-negative quantity i.e. it is always positive R2
 ≥ 0 . It is 

calculated with the assumption that there is an intercept term in the 
regression equation of Y on X1 

 

ii) Its limits ranges from O ≤ R2
 ≤ 1 when R

2
 = 0 , it implies no 

relationship between dependent and explanatory variables. 
 

 

 
iii)  

When R
2
 =1, there is a perfect fit. 

R
2
 = r2

 

From definition, r can be written as 
 

r = 

 
 

where x = Xi − X 
   

∑ xi 
2 ∑ yi 

2
 

R 



 
  

     
 
 
 

  

   
  

 
 

 
2ˆ ∑ x2  ̂ ∑ x y 

R = β 
1 

i 

∑ y2i 

and β1 = i 1 

∑ y2 i 

⎡ ∑ x y ⎤
2 

∑ x2
  (∑ x y ) 

⎢ ∑ ⎥ ⎥∑ = ∑ x ∑ y2 

⎣ i ⎦ i i i 

⎡  ∑ x y ⎤ 2 

= ⎢ 
i  i 

⎥
 

⎣
⎢ 

R
2
 = r2

 

Correlation coefficient r = ± 

While R2
 varies between 0 and 1 i.e. O ≤ R2

 ≤ 1 r varies between - 1 

and + 1 i.e. −1 ≤ r ≤ +1 , indicating negative correlation and positive 
linear correlation respectively, at the two extreme values. 

 

6.5  ADJUSTED R SQUARED  

The R squared statistic suffers from a major drawback. No 
matter the number of variables we add to our regression model the 
value of R square never decreases. 

If either remains same or increases with the new 
independent variable even though the variable is redundant. In 
reality, its result can not be accepted since the new independent 
variable might not be necessary to determine the target variable. 
So the adjusted R square deals with this problem. 

Adjusted R squared measures the proportion of variation 
explained by only those independent variables which are really 
helpful in determining the dependent variable. It is represented with 
the help of the following formula 

 

Adjusted R
2
 = 

⎡ (1 − R2
 )(n −1) ⎤⎫⎪ 

⎩⎪ ⎢⎣ (n − k −1)  ⎥⎦⎪⎭ 

Where n → sample size 

k → number of independent variable 

R → R squared values determined by the model 

 
To conclude the difference between R square and adjusted 

R square we may say that 
i) When we add a new independent variable to a regression 
model, the R-squared increase, even though the new independent 
variable is not useful indeteming the dependent variable. Whereas 

R2 

   



 
  

adjusted R squared increases only when new independent 
variables is useful and affect the dependent variable. 

 
ii) Adjusted R - squared can be negative when R-squared is close 
to zero. 

iii) Adjusted R-squared value always be less than or equal to R- 
squared value. 

 

6.6  THE F-TEST IN REGRESSION  

F - test is a type of statistical test which is very flexible. It can 
be used in a wide variety of settings. In this unit we will discuss the 
F-test of overall significance. It indicates whether our regression 
modd provides a better fit to the data than a model that contains no 
independent variables. So here we will explain how the F-test of 
overall significance fits in with other regression statistics, such as R 
-square. R-square provides an estimate of the strength of the 
relationship between regression model and the response variable. 
It does not provide any formal hypothesis test for this relationship. 
Whereas the overall significance F-test determines whether this 
relationship is statistically significant or not. If the P value for the 
overall F-test is less than the level of significance, we conclude that 
the R-square value is significantly different from zero. 

The overall F-test compares the model with the model with 
no independent variables such type of model is known as intercept 
only model. It has the following two hypothesis. 

a) The null hypothesis - The fit of the intercept only model and our 
model are equal. 

b) Alternative hypothesis - The fit of the intercept - only model is 
significantly reduced compared to our model. 

We can find the overall F - test in the ANOVA table. 
 

Table : ANOVA 

 

Source DF Adj SS Adj MS F - Value P - Value 

Regression 3 12833.9 4278.0 57.87 0.000 

East 1 226.3 226.3 3.06 0.092 

South 1 2255.1 2255.1 30.51 0.000 

North 1 12330.6 12330.6 166.80 0.000 

Error 25 1848.1 73.9   

Total 28 14681.9    



 
  

In the above table, compare the p-value for the F-test our 
significance level. If the p-value is less than the significance level, 
our sample data provide sufficient evidence to conclude that our 
regression model fits the data better than the model with no 
independent variables. 

 

6.7  INTERPRETING REGRESSION COEFFICIENTS    

Regression coefficients are a statistical tool or measure of 
the average functional relationship between two or more than two 
variables. In the regression analysis, one variable is dependent and 
other variables are independent. In short, it measures the degree of 
dependence of one variable on another variable. 

Regression coefficient was used first to estimate the 
relationship between the heights of father‟s and their sons. 
Regression coefficient denoted by b. 

Basically, there are two types of regression coefficients, i.e. 

regression coefficient of regression y on X (byx ) and regression 

coefficients of regression X on Y (bxy ) . 
 

Properties of Regression Coefficient: 
Some important properties of regression coefficient are as 

follows: 
 

1) The both regression coefficients have the same sign. If byx is 

positive, bxy will be also positive and if byx is negative, bxy will be 

also negative. 

If, byx > 0, bxy > 0 

byx < 0, bxy < 0 

2) If a regression coefficient is more than unity, the other 
regression coefficient must be less than unity. If a regression 
coefficient is more than - 1, other regression coefficient must be 
less than - 1. 

If, byx > 1, bxy < 1 

byx > -1, byx < -1 

3) The geometric mean (GM) of two regression coefficients is 
equal to the correlation coefficient. 

r = 

Where, 
r = correlation coefficient 
byx = Regression coefficient of regression y on x. 

 



 
  

  

bxy = Regression coefficient of regression x on y. 

4) Correlation coefficient and regression coefficient have the same 
sign. 

If, r > 0, byx > 0 & bxy > 0 

r < 0, byx < 0 & bxy < 0 

5) Arithmetic mean of two regression coefficients is equal to or 
greater than correlation coefficient. 

(byx + bxy ) 
≤ r 

r 

6) Two regression lines intersects to each other on arithmetic 

means of these variables. ( X ,Y ) 

Computation of Regression Coefficients: 
Regression coefficients can be calculated from following 

formulas. 

byx = 
∑ xy − (∑ x.∑ y ) 

∑ y
2 

− (∑ y )2
 

bxy = 
∑ xy − (∑ x.∑ y ) 

∑ x − (∑ x ) 

Steps: 
For the calculation of regression coefficients have to follow 

the following steps. 

1) Take the sums of all observations of X and Y variables 

(∑ x, ∑ y ) . 

2) Take the sums of squares of X and Y variables (∑ x2
, ∑ y2 ) 

3) Take the sum of products of all observations of X and Y 

variables (∑ xy ) . 
4) Use the following formulas for calculating the regression 

coefficients. 



 
  

  

  
 

 

byx = 
∑ xy − (∑ x − ∑ y ) 

∑ y
2 

− (∑ y )2
 

bxy = 
∑ xy − (∑ x − ∑ y ) 

∑ x2 
− (∑ x )2 

Example : 

X 2 4 1 5 6 7 8 1 0 

Y 3 1 5 7 8 9 0 5 4 

 
Calculate the byx and bxy from above information. 

Solution : 

X Y XY X2 Y2 

2 3 6 4 9 

4 1 4 16 1 

1 5 5 1 25 

5 7 35 25 49 

6 8 48 36 64 

7 9 63 49 81 

8 0 0 64 0 

1 5 5 1 25 

0 4 0 0 16 

First take the sums of all observations of X and Y variables 

(∑ x & ∑ y ) 

∑ x = 2 + 4 +1 + 5 + 6 + 7 + 8 + 1 + 0 

∑ y = 3 + 1 + 5 + 7 + 8 + 9 + 0 + 5 + 4 

 

Then, take sums of squares of X and Y variables 

(∑ x
2 

& ∑ y
2 ) 

∑ x2 = 4 +16 +1 + 25 + 36 + 49 + 64 + 1 + 0 

∑ y2 = 9 + 1 + 25 + 49 + 64 + 81 + 0 + 25 +16 

 

  

∑ y = 270 
2 



 
  

  

byx = 0.85 

bxy =1.32 

 
Now take the sum of products of all observations of X and Y 

variables (∑ xy ) . 

∑ xy = 6 + 4 + 5 + 35 + 48 + 63 + 0 + 5 + 0 

Now keep the above values in following equations and 
calculate the regression coefficients. 

Regression coefficient of Regression Y on X - 

byx = 
∑ xy − (∑ x.∑ y ) 

∑ y2 − (∑ y )2
 

= 
166 + (34 × 42) 

270 −(42)2 

= 
166 −(1428) 
270 −(1764) 

= −1262 
−1494 

= 
1262 

1494 (
(−) ÷ (−) = + ) 

= 0.845 

Regression coefficient of Regression X on Y - 

bxy = 
∑ xy − (∑ x.∑ y ) 

∑ x2 − (∑ x )2
 

= 
166 −(34 × 42) 

196 −(34)2 

= 166 −1428 

196 −(1156) 

= −1262 

−960 

= 1262 

960 

So, byx = 0.85 

bxy = 1.32 



 
  

 
 

6.8 QUESTIONS 

Q.1 

X 2 4 6 5 3 9 10 

Y 4 2 5 7 8 0 4 

Calculate regression coefficients ( byx and bxy ) 

Q.2 

X 4 5 6 8 9 10 7 6 

Y 4 1 5 4 10 12 7 8 

Calculate regression coefficients ( byx and bxy ) 
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Block- 4 

UNIT-VII Problems in Simple Linear 
Regression Model: Heteroscedasticity  

Unit Structure: 

 
7.0 Objectives 

7.1 Introduction 

7.2 Assumptions of OLS Method 

7.3 Heteroscedasticity 

7.4 Sources of Heteroscedasticity 

7.5 Detection of Heteroscedasticity 

7.6 Consequences of Heteroscedasticity 

7.7 Questions 

7.8 References 
 

7.0 OBJECTIVES : 

1. To understand the causes of Heteroscedasticity. 
2. To understand the detection of Heteroscedasticity. 
3. To understand the consequences of Heteroscedasticity. 

 

7.1 INTRODUCTION : 
 

In the previous unit, you learnt about simple linear 
regression as meaning, estimation of simple linear regression 
model etc. In this unit you learn about the problems in simple linear 
regression model. 

Simple regression model includes only two variables, so 
simple regression model is also known as „Two Variables 
Regression Model. When we consider the linear relationship 
between two variables in the simple regression model, then it is 
called as simple linear regression model. There are two methods 
for the estimation of simple linear regression model which are 
namely ordinary least square method (OLS) and maximum 
likelihood principle. When OLS method is unable to use for the 
estimation of simple linear regression model, maximum likelihood 
principle is being used. But because of the following factors, OLS 



 
  

 

 

 

 In the all methods it is important method 

Satisfied results 

It is always used 

OLS Method is easy to understand 

Merits of Ordinary Least Square (OLS) Method 

    

method is appropriate for estimation of simple linear regression 
model. 

 

Simple Linear Regression model has been written as follows: 
 

Where, Yi = Dependent Variable 

β1 = Intercept 

β2 = Slope 

Xi = Independent Variable 

ui = Random Variable 

For the estimation of above simple linear regression if we 
have to use the OLS method, then the study of assumptions of OLS 
method become necessary. 

 

7.2 ASSUMPTIONS OF ORDINARY LEAST SQUARE 
(OLS) METHOD  

Least Square principle is developed by German 
mathematician Gaurs. 

There are ten assumptions of OLS method. In short, we 
discuss as below – 

1. The regression model is linear in the parameters. 

Yi = β1 + β2 Xi + ui 

 

It is a simple linear regression model and this model is linear 

in both (X, Y) Variables and parameters (β1, β2). In short, linearly 



 
  

Var (ui / Xi ) = 62 

in the parameters is crucial for the use or application of least 
square principle. 

2. X values are fixed in repeated sampling: 

Values taken by the regression X are assumed or 
considered to be fixed in repeated sampling: 

Yi = β1 + β1 Xi + ui 

Where Xi = Fixed / Constant 

Yi = Varies 

Because of this assumption the regression analysis becomes the 
conditional regression analysis. 

 
3. Zero mean value of disturbance ui : 

It means, expected value of the disturbance ui is zero. 
Given the values of X, the mean or expected value of the 

disturbance term (ui) is zero. 

Symbolically, 

 
Or 

 
4. Homoscedasticity or equal variance of ui : Homo means 

equal and scedasticity means spread. So Homoscedasticity means 

equal spread. Given the values of X, the variance of ui is the same 

for all observations 

Symbolically, 
 

 

E = (ui / Xi ) = O E (ui) = O 



 
  

AB = CD = EF 

 

In the above figure, AB is the spread of ui for X1, CD is the spread 

of ui for X2 and EF is the spread of ui for X3, 

So, 
 

It means, ui is Heteroscedastic – In this case, var (ui / X1) ≠ 62 

5. No autocorrelation between the disturbance terms : 

Given any two X values, Xi and Xj , ( i ≠ j ) the correlation between 

any two ui and uj ( i ≠ j ) is zero. 

Symbolically, 

Cov ( ui uj / Xi Xj ) = E [(ui – E (ui)/Xi (uj – E(uj)/Xj)] 

= E [(ui/Xi (ujXj)] 
 

Here, E (ui) = O 

E (uj) = O 

= O 

Here, E (ui/Xi) = O 

E (uj/Xj) = O 

 

6. Zero covariance between ui and Xi : 

Cov (ui , Xi) = E [(ui – E(ui) (Xi – E(Xi)] 

Here, E(ui) = O 

= E [(ui (Xi – E(Xi)] 

= E [(ui Xi – E(Xi)ui ] 

= E (ui Xi) - E(Xi) E(ui) 

Here, E(ui) = O 

= E (ui Xi) 

Here, Xi = non stochastic 

= Xi E (ui) 

Here, E (ui) ) = O 

Cov (ui , Xi) = O 



 
  

i 

7. The number of observation ‘n’ is greater than the number of 
parameters (to be estimated). 

 
8. Variability in X values: 

The X variable is a given sample must not all be the same. 
 

9. The regression model is correctly specified. 
 

10. There is no perfect multicolinearity: It means that there is no 
perfect linear relationship among the explanatory variables. 

 
These are the ten important assumption of OLS method. 

 
While using the OLS method for the estimation of simple 

linear regression model, if assumption no. 4, 5 and 10 do not fulfil, 
problems create in the simple linear regression model which are 
namely heteroscedasticity, autocorrelation and multicolinearity. 

Check your progress: 

1. What are the ten principles of ordinary least square (OLS) 
method? 

 

 

 

 

 

 

7.3 HETEROSCEDASTICITY 
 

The term Heteroscedasticity is the opposite term of 
homoscedasticity; heteroscedasticity means unequal variance of 

disturbance term (ui). 

E (ui
2) = 62 → Homoscedasticity 

E (u 2) ≠ 62 → Heteroscedasticity 

 
Given the values of X, the variance of ui (Expected or mean 

value of ui) that E (ui), is the same for all observations. This as 
assumption of OLS, principle which is useful for the estimation of 
simple linear regression model. 

 
 

If above assumption does not fulfil, then the problem of 
heteroscedasticity arises in the estimation of simple linear 
regression. 

E (ui ) = Var (ui) = 62 
2 



 
  

Ex.  If Income of individual increases, has saving increases but 
the variance of saving will be the same, it is known as 
homoscedasticity 

Y�  → S�  → Var (S) = same → Homoscedasticity 

If the variance of saving will be variable, it is known as 
heteroscedasticity. 

Y�  → S�  → Var (S) ≠ same → Heteroscedasticity 
 

7.4 SOURCES OF HETEROSCEDASTICITY 
 

The problem of heteroscedasticity in the simple linear 
regression model is arisen because of the following reasons. 

1. The old technique of data collection: 
While estimating the simple linear regression model by OLS 

method, the old technique has been used for collecting the data or 
information then the problem of heteroscedasticity creates in the 
simple linear regression model. 

2. Presence of Outliners: 
The problem of heteroscedasticity creates because of the 

presence of outliners. Because of it the variance of disturbance 
term does not fix on same. 

 
3. Incorrect Specification of the model: 

If the model (Simple linear regression model specified 
incorrect, the problem of heteroscedasticity arises in it. 

 

7.5 DETECTION OF HETEROSCEDASTICITY 
 

There are mainly five methods on tests of the detection of 
the problem of heteroscedasticity in the simple linear regression 
model. With the help of these detecting methods of 
heteroscedasticity, you will be able to find the problem of 
heteroscedasticity in the simple linear regression model. 

• Graphical method 

• Park Test 

• Glejser Test 

• Spearman‟s Rank Correlation Test 

• Goldfeld - Quandt Test. 



 
  

ui 

ui 

1. GRAPHICAL METHOD: 

For the detection of heteroscedasticity problem in the simple 

linear regression model, in this method squared residuals ( ∧2 ) are 

plotted against the estimated value of the independent variance 

∧ 
Yi 

In the graphical method, there are mainly following four 
patterns. 

 
i) No Systematic Pattern: 

∧2 

ui 
 

 

 

 

O 

Y
∧

i / Xi 

In the above graph, there is no systematic relationship 

between Y
∧

i / Xi 
and 

∧2 
so, there is no heteroscedasticity. 

 
 

ii) Linear Pattern : 

∧2 

ui 
 

 

 

 

O 

Y
∧

i / Xi 

 
Above  graph  indicates  the  linear  relationship between 

∧
i / Xi and 

∧2 
which showed the presence of the problem of 

Y ui 
heteroscedasticity. 

  



 
  

ui 

iii) Quadratic Pattern: 

∧2 

ui 
 

 

 

 

O 

Y
∧

i / Xi 

Above graph also shows, the presence of heteroscedasticity 
in simple linear regression model. 

iv) Quadratic Pattern: 

∧2 

ui 
 

 

 

 

O 

Y
∧

i / Xi 

Above graph indicates that there is the present of problem of 
heteroscedasticity. In short, when there is the systematic 

relationship between 

heteroscedasticity. 

Y
∧

i / Xi 
and 

∧2 
then there is the presence of 

 
2. PARK TEST: 

R. E. Park developed the test for the detection of 
heteroscedasticity in the regression model which is known as Park 
Test. R. E. Park developed this test in Econometrica in article 
entitled „Estimation with Heteroscedastic Error Terms‟ in 1976. 

 

Park said that, 6i2 is the heteroscedastic variance of ui which 
varies and t

2
he relationship between heteroscedastic variance of 

residuals (6i ) and explanatory variable (Xi). 

6i
2 

= 6
2 

Xi
β 

evi - (1) 

In 6i
2 

= In 6
2 

+ βln Xi + Vi - (2) 



 
  

Xi 

2 

u i 

u i 

u i 

u i 

  

 

Where, 
2 

6i 

 

= Heteroscedastic Variance of ui 

6
2  

= Homoscedastic Variance of ui 

X =  explanatory variable 

Vi = Stochastic term 

2 ∧2 
If, 6i is unknownm 

2 
Park suggeted ui 

residuals) instead of 6i . 

 
 
 
 

 
(squared regression 

∧2 
In ui 

 
∧2 

= In 6 + β ln Xi + Vi - (3) 
2 

where, In 6 - α 

In ui = α + β ln Xi + Vi - (4) 

Criticisms on Park Test: 

Goldfeld and Quandt criticized that Park used the, Vi 
Stochastic term in the process of detection of the problem of 
heteroscedasticity which is or can be already heteroscedastic. 

But Park has shown, Vi is a stochastic term which is 
homoscedastic. 

3. GLEJSER TEST: 
H. Glejser developed the test for the detecting the 

heteroscedasticity in 1969 in the article entitled „A New Test for 
Heteroscedasticity‟ in Journal of the American Statistical 
Association. 

Glejser suggested that get the residuals value while 
regressing on the data and the regress on residual value, while 
regressing, Glejser used the following six types of functional form. 

⏐ ∧ ⏐ = β1 + β2 Xi + Vi - (i) 

⏐ 
∧
 ⏐ = β1 + β2 

⏐ ∧
u i 

β β  1  

u i Xi 

+ Vi - (ii) 

+ Vi - (iii) 

⏐ 
∧
 ⏐ = β1 + β2 

⏐∧ ⏐ = 

⏐∧ ⏐ = 

 1 
+ Vi - (iv) 

 

+ Vi - (v) 

 

+ Vi - (vi) 

Xi 

  

 
  



 
  

u i 

Above first 4 equations are linear in parameters and last 2 
equations are non - linear in parameters. 

 
Glejser suggested above 6 functional forms for testing the 
relationship between the stochastic term (Vi) and explanatory 
variable (X). 

According Glejser, first four equations (1, 2, 3, 4) give the satisfied 
results because these are linear in parameter and last two 
equations (5, 6) give non - satisfied result, because these are non - 
linear in parameters. 

Criticisms on Glejser Test : 

Goldfeld and Quandt criticized on Glejser test as below – 

1. Glejser suggested six functional forms, in the last two 
functional forms get the non – linear estimates while taking 
variance of ordinary least square (OLS) estimates. 

2. Vi is a stochastic term which can be heteroscedastic and 
multicolinears and the expected value of Vi is non – zero. 

E (Vi) ≠ O 
 

4. SPEARMAN’S RANK CORRELATION TEST: 

This test is based on the rank correlation coefficient. That is 
why this test is known as Spearman‟s Rank Correlation Test. 

 
Spearman‟s Rank Correlation Test indicates the absolute 

value of ⏐∧ ⏐and Xi. Spearman‟s Rank Correlation is denoted by 

rs. 

Symbolically, 

 

 
⎡ Σdi ⎤ 

rs = 1 – 6 

Where, 

⎢ ⎥ 

⎢⎣ n(n2 −1)⎥⎦ 

rs  = Spearman‟s Rank Correlation Coefficient. 

n = no. of pairs of observation ranked 

di = the difference in the ranks assigned to two different 
characteristics of the 9th. 

 
For detecting the heteroscedasticity in the simple linear regression 
model, following steps has been suggested by spearman. 

Yi = β1 + β2 Xi + ui 



 
  

 
  

This is the simple linear regression model 
Steps : 

i) Fit the regression to the data
∧
obtains res

∧
iduals (ui). 

ii) Ignoring the sign of rank⏐ ⏐in ascending 

 
/descending form and compute. 

⎡ rs -  n − 2 ⎤ 

t ⎢  ⎥ 

⎣ 
⎥
⎦ 

df = n - 2 

u i u i 

If computed value of t is greater than critical t value, there is the 
presence of heteroscedasticity in the simple linear regression 
model. 
If the computed value of t is less than critical t value, there is the 
absence of heteroscedasticity in the simple linear regression 
model. 

5. GOLDFELD - QUANDT TEST : 

Goldfeld and Quandt developed a test to detect the problem 
of heteroscedasticity which is known as Goldfeld - Quandt test. 

This test  is depends on  „there  is positive  relationship 
2 

between heteroscedasticity ( 6i ) and explanatory variable (Xi). 

 
Steps : 

There are mainly following 4 steps for detecting the problem 
of heteroscedasticity. 

 
1) Order or rank the observations according to the value of Xi 
beginning with the lowest X value. 

Ex. 
 
 

 

⇒ 

Yi Xi 

20 18 

30 15 

40 17 

50 25 

60 30 

 

Yi Xi 

30 15 

40 17 

20 18 

50 25 

60 30 

 



 
  

A 

B 

15 

17 

18 

25 

30 

30 

40 

20 

50 

60 

Xi Yi 

Calculated 
F value > 

Critical 
F value ⇒ 

Presence of the 
Heteroscedasticity 

2) Omit central observations and divide the remaining (n - c) 
observations into two groups 

 

 
 
 

 
ignored 

Yi Xi 

30 15 

40 17 

50 25 

60 30 

iii) Fit separate OLS regressions to the first observation and the 
last observation (B) and obtain the respective residual sums of 

squares RSS1 and RSS2. 

iv) Compute the ration - 

RSS2 /df 
= 

RSS2 

F = RSS1/df RSS1 

Calculated value of F ration at the given level of significance 

(α) is greater or more than given critical F value, the homoscedastic 
hypothesis is rejected sand heteroscedastic hypothesis is 
decepted. 

 

6. Other Tests for detecting the problem of Heteroscedasticity 
i) Breush - Pagan - Godfrey Test 
ii) White‟s General Heteroscedasticity Test 
iii) Koenker - Bassett (KB) Test. 

 

7.6  CONSEQUENCES OF HETEROSCEDASTICITY  

Consequences of using OLS for estimation of simple linear 
regression model in the presence of the problem of 
heteroscedasticity are as follows - 
1. In the presence of heteroscedasticity, values of OLS estimators 
do not change, but it affect on variance of estimators. 
2. The properties of OLS estimators which are Linearity and 
Unbiasedness do not change or vary in the presence of 
heteroscedasticity, but there is lack of minimum variance, that is 
why the estimators are not efficient. 



 
  

3. Get the more confidence interval. 
4. There is impossibility to test the statistics significant of 
parameter estimates because of the presence of 
heteroscedasticity. 

 

7.7 QUESTIONS 
 

1. Explain any two tests in detection of heteroscedasticity. 
2. Explain the assumptions of OLS method of estimation of 

simple linear regression model. 
3. What is heteroscedasticity? Explain the causes and 

consequences of heteroscedasticity. 
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8.0 OBJECTIVES : 

1. To understand the causes of Autocorrelation. 
2. To understand the detection of Autocorrelation. 
3. To understand the consequences of Autocorrelation. 

 

8.1 INTRODUCTION : 
 

While using the OLS method for the estimation of simple linear 
regression model, if assumption 5 which is no autocorrelation 
between the disturbance terms does not fulfil, the problem of 
autocorrelation in the simple linear regression model arises. 

 

8.2  AUTOCORRELATION  

The autocorrelation may be defined as „correlation between 

residuals disturbances (ui, uj). 
 

The OLS method of estimation of linear regression model 

assumes that such autocorrelation does not exist in disturbances 

(ui, uj). 



 
  

 

Symbolically,  

E (ui, uj) = 0 

 

 

Here, i ≠ j 

In short, autocorrelation is a problem which creates while 
using the OLS method to estimate the simple linear regression 
model. 

According to Tinmer „autocorrelation is tag correlation 
between two different series.‟ 

 

8.3 SOURCES OF AUTOCORRELATION 
 

The problem of autocorrelation arises while estimating the 
simple linear regression model by OLS method because of the 
following reasons. 

1. Time series that varies or changes slowly has a problem of 
autocorrelation. 

2. If some important independent variables are omitted from the 
regression model, the problem of autocorrelation arises. 

3. If the regression paradigm is framed in the wrong mathematical 
form, then the successive values of the residual become 
interdependent. 

4. While taking averages of data, it becomes slow, that is why the 
disturbance term indicates the problem of autocorrelation. 

5. It the calculation process is done while searching for the missing 
figure of the compound, this creates a problem of interdependence 
between them. 

6. In the regression model, when is disturbance term is incorrectly 
arranged autocorrelation is formed. 

 

8.4 DETECTION OF AUTOCORRELATION 
 

There are mainly three methods to detect the problem of 
autocorrelation as follows - 

• Graphical Method 

• The Runs Test 

• Durbin - Watson & Test 

1. Graphical Method : 

Whether is there the problem of autocorrelation? the answer 
of this question will be got by the examining the residuals. 



 
  

There are various ways of examining the residuals : 

1) We can simply plot the residuals against time which known as 
the time sequence plot. 

2) We can plot the standardized residuals against time and 
examine for detecting the problem of au

∧
tocorrelation. 

3) Alternatively, we can plot the residuals 
t 

Positive Autocorrelation : 

against ∧ 
.
 

u
t −1 

 

Negative autocorrelation : 

 

u 



 
  

No Autocorrelation : 

 

• When, pairs of residuals are more in I and II quadrants, there is 
the presence of positive autocorrelation. 

• When, pairs of residuals are more in II and IV quadrants, there 
is the presence of negative autocorrelation. 

• When, pairs of residuals are equals in the all four quadrants, 
there is no presence of autocorrelation. 

2. The Runs Test 

The run test is developed by R. C. Geary IN 1970 in the 
article entitled „Relative Efficiency of Count Sign changes for 
Asserting Residual Autoregression in least squares Regression‟ in 
Biometrica. 

 
The run test is also known as Geary test and it is non - 

parametric test. 

Suppose, there are 40 observations of residuals as follows - 

(- - - - - - - - -) (+ + + + + + + + + + + 

+ + + + + + + + + +) ( ------------------------------------- ) 

Thus, there are 9 negative residuals, followed by 21 positive 
residuals followed by 10 negative residuals, for a total of 40 
observations. 

First let we know the concept of run and length of run. 



 
  

N 

R 

Run: 
Run is an uninterrupted sequence of one symbol of attribute 

such as + or - . 
 

Length of Run: 
Length of run is the number of elements in the series. 

 
In the above series - 

N = Number of total observations 

N = N1 + N2 = 40 

N1 = Number of positive residuals = 21 

N2 = Number of negative residuals = 19 
R = Number of Run = 3 

 
Now taking the null hypothesis that the successive 

residuals are interdependent and assuming that both N1 & N2 

(N1 > 10, N2 > 10) the number of runs (R) are follows normal 

distribution. 

 

Mean: E(f) = 
2N1N2 + 1

 
 

Variance: 6 
2 

= 

2N1N2 (2N1N2- N) 

(N)2 (N −1) 

Now let we decide the confidence interval (CI) for R. 

95% CI for R = E(R) ± 1.96 6R 

99% CI for R = E(R) ± 2.56 6R 

Take any confidence interval for R from above two. 

Decision Rule - 

If number of Runs (R) lies in the preceding confidence 
interval, the null hypothesis accepted. 

If number of Runs (R) lies in the preceding confidence 
interval, the null hypothesis rejected. 

When we reject the null hypothesis, it means that residuals 
exhibit autocorrelation and vicevarsa. 

3. Durbin - Watson d Test: 

The most celebrated test for detecting the autocorrelation or 
serial correlation which is developed by statisticians Durbin and 
Watson - in the article entitled „Testing for social, correlation in least 



 
  

squares regression in Priometrica in 1951. This test is popularly 
known as the Durbin - Watson d statistic test. 

Durbin - Watson d∧statis∧tic test as defined as - 

∑t = n ( 2 

t = 2 ut 
− ut−1

) 

d = 

Where, 

∧ 

∑tt ==n1 ut 

Numerator = Sum of squares of difference of 
continuing residuals 

∧ ∧ 

( ∑(ut 
− ut−1

) 2 ) 

Denominator = Sum of squared residuals 
∧ 

(∑ut 
2 ) 

Thus, the Durbin - Watson d statistic is the ratio of sum of 
squares of difference between continuing two residuals 

∧ ∧ 

( ∑(ut 
− ut−1

) 2 ) to the sum of squared residuals 

∧ 

(∑ut
 

 

2 ) . 

Assumptions : 
This test is based on the following some assumptions - 

i) Regression model includes intercept term (β1) 

ii) Residuals follow the first order auto-regressive scheme. 

ut = e ut -1 + vt 

iii) This test assume that there is no tag value of dependent 
variable in the regression model. 

Yt = β1 + β2Xt + β3 Yt -1 + ut 

iv) All explanatory variables (X‟ s) are non - stochastic. 

 
v) There is presence of all observations in the data. 

∧ 
2 

∧ 
2 

∧ ∧ 

∑ut  
+ ut − 1 

− 2∑ut 
ut − 1 

d = ∧ 

∑ ut 
2 

2 



 
  

 

 

∑
∧ 

2 ∑
∧ 

2
 

Approximately, ut and ut −1 are same. 
∧ 2 

– 2∑ 
∧ ∧

 

2∑ut
 

d = 

ut ut − 1 

∧ 

∑ ut 
2 

∧ 2 ∧ ∧ 

2 
∑ut

 

= ∧ 2 

∑ ut
 

– 2∑ut ut − 1 

∧ 2 

∑ ut
 

∧ 2 ∧ 

2 − 
2∑ut

 

= 
ut − 1 

∧ 2 

∑ ut
 

⎜⎛ ∑ 
∧ ∧ ⎟⎞ 

2 −⎜1 − 

= ⎜ 

ut ut − 1 ⎟ 

∧ 2 ⎟ 

 

 

Where, 

⎜ 
⎝ 

 
∧ ∧ 

∑ut 
ut − 1 

∑ ut
 

 
∧ 

⎠
⎟ 

 

∑XY 

= ∧ 2 

∑ ut
 

= e = 2 
X 

∧ 

∴ d = 2 ( 1 e ) 
∧ 

- 1 ≤ e ≤ 1 

∧ 

The value of e is between -1 and 1 or equal to -1 and 1. 

0 ≤ d ≤ 4 

The value of d is between 0 and 4 or sometimes equal to 0 and 4. 
∧ 

When, e 
∧ 

When, e 
∧ 

When, e 

= 0 , d = 2 ⇒ No Autocorrelation 

= 1 , d = 0 ⇒ Perfect Positive Autocorrelation 

= -1 , d = 4 ⇒ Perfect Negative Autocorrelation 



 
  

How to apply this test – 
∧ 

1. Run the regression and obtain the residuals ( ut ) 
2. Compute d ( by using equation (1) ). 

3. For given sample size and given number of explanatory 

variables, find out the critical dL and du value. 

4. Then take decision about presence of autocorrelation by using 
following rules. 

 

No. If Null 
Hypothesis 

Decision 

1. 0 < d < dL Reject No positive 
autocorrelation 

2. dL ≤ d ≤ du No decision No positive 
autocorrelation 

3. 4 - dL < d < 4 Reject No negative 
autocorrelation 

4. 4 – du ≤ d ≤ 4 - dL No decision No negative 
autocorrelation 

5. du ≤ d ≤ 4 - du Do no reject No autocorrelation 
(Positive/Negative) 

 
In the term no decision, Durbin – Watson test remains 

inconclusive. This is the limitation of this test. 
 

8.5  CONSEQUENCES OF AUTOCORRELATION  

 
1. When the problem of autocorrelation creates in the regression 
model, we get linear, unbiased and consistent parameter estimates; 
but we do not get minimum variance of parameter estimates. 

2. In the presence of autocorrelation is regression model, we get 
inefficient parameter estimates. 

 
3. Hypothesis testing becomes invalid in the case of presence of 
autocorrelation. 

 
4. While estimating the regression model, variance of parameter 
estimates is not minimum confidence intervals are big in the 
presence of autocorrelation in regression model. 



 
  

5. If we ignore the presence of autocorrelation in the regression 

∧ 2 

model, 6 becomes less identified and determination coefficient 

becomes over identified. 
 

8.6 QUESTIONS 
 

1. Explain the meaning and sources of autocorrelation. 
2. Explain the detection of autocorrelation. 
3. Explain the sources and consequences of autocorrelation. 

 

8.7 REFERENCES 
 

• Gujarati Damodar N, Porter Drawn C & Pal Manoranjan, „Basic 
Ecometrics‟, Sixth Edition, Mc Graw Hill. 

• Hatekar Neeraj R. „Principles of Econometrics : An Introduction 
(Using R) SAGE Publications, 2010 

• Kennedy P, „A Guide to Econometrics‟, Sixth Edition, Wiley 
Blackwell Edition, 2008 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
  

 

UNIT-VIII PROBLEMS IN SIMPLE LINEAR 
REGRESSION MODEL: 
ULTICOLLINEARY 

Unit Structure: 

 
9.0 Objectives 

9.1 Introduction 

9.2 Multicolinearity 

9.3 Sources of Multicolinearity 

9.4 Detection of Multicolinearity 

9.5 Consequences of Multicolinearity 

9.6 Summary 

9.7 Questions 

9.8 References 
 

9.0 OBJECTIVES 

1. To understand the causes of Autocorrelation. 
2. To understand the detection of Autocorrelation. 
3. To understand the consequences of Autocorrelation. 

 

9.1 INTRODUCTION 
 

While using the OLS method for the estimation of simple 
linear regression model, if assumption 10 which is no perfect 
multicolinearity does not fulfil, the problem of autocorrelation in the 
simple linear regression model arises. 

 

9.2  MULTICOLINEARITY  

You all studied the ten assumptions OLS (Ordinary Least 
Square) method which are also assumptions of Classical Linear 
Regression Model (CLRM). The tenth assumption of OLS method 
is that there is no perfect linear relationship among the explanatory 
variables (X‟s) 

The multicolinearity is due to economist Ragner Frisch. The 
multicolinearity is a existence of a perfect linear relationship 



 
  

Y 

X2 
X3 

Y 

X2 X3 

Y 

X2 
X3 

Y 

X2 

X3 

between the some or all explanatory variables of a regression 
model. 

 
There are five types of degree of multicolinearity which have 

been shown in the following figures. 

If we consider, there are two explanatory variables namely 

X2, X3 and Y is dependent. 

No Colinearity: 
 

Low Colinearity: 
 

 
Moderate Colinearity: 

 

 
High Colinearity: 

 



 
  

Y 

X2 

X3 

Very High Colinearity: 
 

Why the OLS method or classical linear regression model 
assumes that there is not existence of multicolinearity? The answer 
of this question is that, if the multicolinearity is perfect, the 
regression coefficients of the explanatory variable (X‟s), the 
regression coefficients of the explanatory variable (Xs) are 
indeterminate and the standard errors are infinite. And if the 
multicolinearity is less, the regression coefficients are determinate; 
possess large standard error which means that the coefficients 
cannot be estimated with accuracy. 

 

9.3 SOURCES OF MULTICOLINEARITY 
 

There are mainly four causes or sources of multicolinearity. 
 

1. The data collection method is responsible to create the 
problem of s multicolinearity. For example, sampling of limited 
range of the values which taken by regressions in the population. 

2. To constraints on the model which can be responsible to 
create the problem of multicolinearity. 

 
3. Because of model specification, the problem of 
multicolinearity arises. 

4. Because of over identified, multicolinearity arises. 
 

These are the major causes of multicolinearity. 
 

9.4 DETECTION OF MULTICOLINEARITY 
 

There is no specific method available for detection of 
multicolinearity. Thus, following these rules are used to detect the 
problem of multicolinearity. 

1. High R2 but few significant – Ratio‟s. 
2. High pair-wise correlations among regressions. 
3. Examination of partial correlation. 
4. Auxiliary Regression. 



 
  

i 

i 

1. High R2 but few significant – Ratio’s: 
If R2 (coefficient of determination) is high (more than 0.8), 

the f test in most cases will reject the hypothesis that the partial 
slope coefficients are simultaneously equal to zero, but individual t 
tests will indicate, vary few of the partial slope coefficients are 
statistically different from zero. 

2. High pair-wise correlations among regressions: 
If zero order correlation coefficient between two independent 

variables in the regression model is high, the nature of problem of 
multicolinearity is high. But high zero order correlation coefficient is 
not necessary condition, but it is complementary condition of the 
presence of multicolinearity in regression model. If there are only 
two explanatory variables regression model high zero order 
correlation coefficient is the useful method for identifying the 
presence of multicolinearity. 

3. Examination of partial correlation: 
The way or test or method of detecting the problem of 

multicolinearity that is examination of partial correlation has 
suggested Farror and Glauber. In this method, if we regress the y 
on X, overall coefficient determination is very high; but other partial 
R2 is comparatively small and at least one variable is unnecessary, 
that is the condition of the problem of multicolinearity. 

 
4. Auxiliary Regression: 

For identifying independent variables are correlated to which 
independent variables, we have to by regressing each independent 
variable ( Xi S ) . Then we have to consider the relation between F 

test, criterion ( fi ) and coefficient of determination (R
2 ) and for it 

following formula has been used. 
 

 
fi = 

 

 

Where, 

R
2 = coefficient of determination for ith 

K = Number of explanatory variables 
n = Sample size 

 R
2 

/ (K 2) 

 
i  

 +1 
i 
2    



 
  

 
 

9.5 CONSEQUENCES OF MULTICOLLINEARITY 

Consequences of the term multicolinearity are as follows: 

 
1) OLS estimators show the BLUE properties, but variance & 

covariance are very high. 

2) Confidence intervals are so wider because of the high variance 
and covariance. So, null hypothesis (HO) does not accept easily. 

3) t-ratio to one or more than one coefficients is not statistically 
significant because of high variance and co-variance. 

4) If t-ratios for one or more than coefficients are not statistically 
significant, but we get very high value of R2. 

5) In the presence of multicolinearity, estimators and its standard 
errors can respond also to the small change or variation in the 
data. 

6) There is exactly linear correlation in the explanatory variables in 
the model. So regression coefficients are indeterminate and 
standard errors are infinite. 

7) If there is imperfect linear correlation between explanatory 
variable in the explanatory variables in the model and 
regression coefficient are determinate, but standard errors are 
so high. 

 

9.6 SUMMARY 
 

When we consider the linearity in simple regression model or 
two variable models, it is called as simple linear regression model. 

 
There are two ways or methods for estimating the simple 

linear regression model. When we use the ordinary least square 
(OLS) method for the estimation of simple linear regression model; 
homoscedaticity or equal variance of ui , no autocorrelation between 

the disturbance terms and no prefect multicolinearity these three 
assumption are unable to fulfil, sequentially the problem of 
heteroscedasticity, autocorrelation and multicolinearity raise which 
has been discussed in this unit. 

 

9.7 KEY WORDS 
 

 

Multicollinearity - Multicollinearity is a statistical phenomenon in regression 
analysis where two or more independent variables in a multiple regression 
model are highly correlated. In other words, there is a linear relationship 
between two or more predictor variables. Multicollinearity can cause 
problems in the estimation of the regression coefficients and their 
interpretation.  
 

BLUE Properties - In statistics, BLUE stands for Best Linear Unbiased 
Estimators. The term is associated with linear regression models and 



 
  

emphasizes certain desirable properties that a set of parameter estimates 
can have. Here's a breakdown of what BLUE properties mean: 

 

 

9.8 QUESTIONS 
 

1. Explain the meaning and sources of multicolinearity. 
2. Explain the detection of multicolinearity. 
3. Explain the sources and consequences of multicolinearity. 
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